安全可控的數(shù)據(jù)庫訪問操作平臺需具備的能力:安全可控的數(shù)據(jù)庫客戶端,統(tǒng)一數(shù)據(jù)庫訪問入口,基于瀏覽器,即開即用,方便用戶能夠無縫地管理和查詢多個數(shù)據(jù)庫,簡化了操作流程。統(tǒng)一數(shù)據(jù)庫申請審批流程,管理員可以在一個地方管理所有數(shù)據(jù)庫的賬號、權(quán)限和操作行為,確保權(quán)限管理的一致性,避免權(quán)限冗余。敏感數(shù)據(jù)發(fā)現(xiàn)和動態(tài)脫敏,確保只有經(jīng)過授權(quán)的用戶才能看到完整的數(shù)據(jù),未經(jīng)授權(quán)的用戶只能訪問到***后的數(shù)據(jù),有效降低數(shù)據(jù)泄露風險。***授權(quán)和操作日志審計,詳細記錄每個用戶的行為,包括何時訪問了哪個數(shù)據(jù)庫、執(zhí)行了什么操作等,幫助審計員快速識別異常行為。上訊數(shù)據(jù)網(wǎng)關(guān),安全可控的數(shù)據(jù)庫訪問操作平臺。建立統(tǒng)一的數(shù)據(jù)庫變更管理流程,確保變更的合規(guī)性和安全性至關(guān)重要。本地上訊數(shù)據(jù)網(wǎng)關(guān)一體化
隨著人工智能和自動化技術(shù)的應用,數(shù)據(jù)網(wǎng)管的工作方式也在發(fā)生變革。通過使用自動化工具和腳本,數(shù)據(jù)網(wǎng)管可以實現(xiàn)一些日常任務(wù)的自動化處理,如設(shè)備配置備份、網(wǎng)絡(luò)性能監(jiān)測和報警等。人工智能技術(shù)可以幫助數(shù)據(jù)網(wǎng)管預測潛在的網(wǎng)絡(luò)問題,提前進行防范和優(yōu)化。例如,通過分析歷史數(shù)據(jù)和網(wǎng)絡(luò)行為模式,預測可能出現(xiàn)的故障,并提前采取措施。然而,盡管技術(shù)帶來了便利,數(shù)據(jù)網(wǎng)管仍然需要具備深厚的技術(shù)知識和經(jīng)驗,以便在復雜的網(wǎng)絡(luò)環(huán)境中做出準確的判斷和決策。例如,當自動化系統(tǒng)發(fā)出錯誤的報警或無法處理某些特殊情況時,數(shù)據(jù)網(wǎng)管需要憑借自己的專業(yè)能力進行干預和解決。
提供上訊數(shù)據(jù)網(wǎng)關(guān)售后服務(wù)數(shù)據(jù)網(wǎng)關(guān)能夠解決企業(yè)在數(shù)據(jù)庫訪問過程存在的安全和合規(guī)風險。
2018年的萬豪酒店事件。在這起事件中,黑客成功越過了酒店數(shù)據(jù)庫的安全防護,未經(jīng)授權(quán)地訪問了數(shù)據(jù)庫,導致超過3億客戶的個人信息被泄露。這些信息包括了客戶的姓名、聯(lián)系方式、信用卡信息等敏感數(shù)據(jù)。這一泄露事件引起了廣泛的關(guān)注和憤慨,不僅對萬豪酒店的聲譽造成了重大影響,也對客戶的隱私權(quán)產(chǎn)生了嚴重威脅,甚至可能引發(fā)法律訴訟。上海上訊信息技術(shù)股份有限公司自主研發(fā)的數(shù)據(jù)網(wǎng)關(guān)DG通過對數(shù)據(jù)庫操作人員的細顆粒度權(quán)限管控、敏感數(shù)據(jù)動態(tài)脫敏、SQL審核、高危操作管控等,實現(xiàn)運維過程中的事前預防、事中管控和事后審計,為數(shù)據(jù)庫管理者提供簡單高效的數(shù)據(jù)管控解決方案,滿足內(nèi)部數(shù)據(jù)安全保護需求和外部監(jiān)管要求。
數(shù)據(jù)網(wǎng)關(guān)DG提供以下關(guān)鍵功能,以確保敏感數(shù)據(jù)在訪問和處理過程中得到動態(tài)脫敏,防止敏感信息泄露。動態(tài)脫敏策略配置:數(shù)據(jù)網(wǎng)關(guān)DG支持根據(jù)類別或字段配置動態(tài)脫敏策略,確保不同類型的數(shù)據(jù)都得到適當?shù)碾[私保護,防范數(shù)據(jù)泄露風險。類別策略模板配置:數(shù)據(jù)網(wǎng)關(guān)DG支持創(chuàng)建和配置類別脫敏策略模板,以應用于特定的敏感數(shù)據(jù)類別。通過靈活配置脫敏策略模板,可以針對不同數(shù)據(jù)類別應用相應的保護措施,提高數(shù)據(jù)安全性和合規(guī)性,并且可以將配置好的脫敏策略模板批量應用于多個數(shù)據(jù)源。這一功能簡化了數(shù)據(jù)源的脫敏策略配置流程,避免了逐一設(shè)置的繁瑣操作。
數(shù)據(jù)網(wǎng)關(guān)DG提供數(shù)據(jù)訪問行為的全部日志記錄,滿足內(nèi)部審計和外部合規(guī)的要求。
數(shù)據(jù)雷達(DR)是基于AI大模型技術(shù)的智能數(shù)據(jù)分類分級產(chǎn)品,能夠針對關(guān)系性數(shù)據(jù)庫、NoSQL數(shù)據(jù)庫和數(shù)據(jù)倉庫等實現(xiàn)元數(shù)據(jù)掃描、數(shù)據(jù)目錄構(gòu)建、分類分級模型訓練和自動化識別。相比于傳統(tǒng)的數(shù)據(jù)分類分級產(chǎn)品,數(shù)據(jù)雷達產(chǎn)品具有如下優(yōu)勢:結(jié)果更準確基于AI大模型,能夠?qū)崿F(xiàn)同時針對數(shù)據(jù)類型在詞法、語法和語義級別的特征提取和分析,從而針對數(shù)據(jù)類型建立語義級別的高緯度特征向量,**提高了數(shù)據(jù)分類分級的準確度。可復制性更好基于AI大模型,通過針對數(shù)據(jù)字段的內(nèi)容進行訓練,在不依靠數(shù)據(jù)字段的名稱和注釋的情況下就能夠達到很高的準確度,所以保證了訓練后的數(shù)據(jù)分類分級模型的可復制性。擴展性更好基于AI大模型,使用人員只需要針對一個數(shù)據(jù)類型準備幾千條-幾萬條的訓練數(shù)據(jù)就可以實現(xiàn)數(shù)據(jù)類型識別能力的訓練,不需要針對不同的數(shù)據(jù)類型編寫和維護。數(shù)據(jù)網(wǎng)關(guān)DG支持多種告警方式的配置,包括郵件告警、平臺消息告警等,以靈活滿足實際使用中的告警需求。品牌上訊數(shù)據(jù)網(wǎng)關(guān)哪里來
上訊數(shù)據(jù)網(wǎng)關(guān) DG 強大的兼容性,使其能夠與各種企業(yè)網(wǎng)絡(luò)環(huán)境無縫對接。本地上訊數(shù)據(jù)網(wǎng)關(guān)一體化
大多企業(yè)數(shù)據(jù)環(huán)境中存在著多樣化的數(shù)據(jù)庫類型和數(shù)據(jù)存儲平臺。為了有效管理這些數(shù)據(jù)庫,數(shù)據(jù)雷達DR提供了***的數(shù)據(jù)庫管理功能,涵蓋了以下關(guān)鍵方面:***的數(shù)據(jù)庫類型支持:支持不低于40種數(shù)據(jù)庫類型,包括常見的主流數(shù)據(jù)庫(如Oracle、MySQL、SQLServer、DB2、PostgreSQL等)、國產(chǎn)數(shù)據(jù)庫(如DM、GaussDB、Oscar等)以及大數(shù)據(jù)平臺下的數(shù)據(jù)庫(如Elasticsearch、MongoDB、Hbase等)。平臺通過支持常見的jdbc協(xié)議,實現(xiàn)對各種數(shù)據(jù)庫的連接和管理。本地上訊數(shù)據(jù)網(wǎng)關(guān)一體化