數(shù)據(jù)網(wǎng)關(guān)DG提供虛擬的數(shù)據(jù)訪問功能,通過字段級別的權(quán)限劃分和細顆粒度的權(quán)限管控,確保對訪問數(shù)據(jù)源的用戶進行有效的權(quán)限管理,保障數(shù)據(jù)的安全和隱私。查詢大表控制:數(shù)據(jù)網(wǎng)關(guān)DG能夠有效地控制對大表的查詢結(jié)果集訪問條數(shù),優(yōu)化查詢性能,確保系統(tǒng)穩(wěn)定運行。提供內(nèi)置的SQL工作臺,通過瀏覽器Web頁面對數(shù)據(jù)庫進行操作。用戶可以通過友好的圖形化界面進行數(shù)據(jù)庫查詢、修改、管理等操作,無需額外的客戶端軟件,增強了用戶操作的靈活性和便利性。客戶端和工具支持:通過使用數(shù)據(jù)網(wǎng)關(guān)的JDBC驅(qū)動,用戶可以在數(shù)據(jù)庫客戶端(如DBeaver、Datagrip)和BI分析工具(如SmartBI、帆軟Report)中進行數(shù)據(jù)庫操作,拓展了數(shù)據(jù)訪問和分析的應(yīng)用場景。
數(shù)據(jù)網(wǎng)關(guān)DG支持根據(jù)類別或字段配置動態(tài)脫敏策略,確保不同類型數(shù)據(jù)都得到適當隱私保護,防范數(shù)據(jù)泄露風險。上訊數(shù)據(jù)網(wǎng)關(guān)銷售電話
數(shù)據(jù)分類分級落地面臨的挑戰(zhàn),傳統(tǒng)的數(shù)據(jù)分類分級技術(shù)無法滿足快速增長的大規(guī)模數(shù)據(jù)的需求。詞法分析的局限性導致數(shù)據(jù)分類分級的準確度較低,基于字段名稱和注釋的分類分級規(guī)則可復制性比較差,數(shù)據(jù)分類分級規(guī)則的編寫和維護需要大量人力介入。上訊數(shù)據(jù)雷達,基于AI的智能數(shù)據(jù)分類分級工具。自動化的數(shù)據(jù)特征提取和數(shù)據(jù)模型訓練,消除了規(guī)則的編寫和維護成本基于AI大模型,使用人員只需要針對一個數(shù)據(jù)類型準備幾千條-幾萬條的訓練數(shù)據(jù)就可以實現(xiàn)數(shù)據(jù)類型識別能力的訓練,不需要針對不同的數(shù)據(jù)類型編寫和維護,**降低了傳統(tǒng)數(shù)據(jù)分類分級技術(shù)涉及的規(guī)則編寫和維護成本。方便上訊數(shù)據(jù)網(wǎng)關(guān)好處企業(yè)急需一個集中的數(shù)據(jù)庫管理平臺,實現(xiàn)對所有數(shù)據(jù)庫的統(tǒng)一管理和監(jiān)控。
數(shù)據(jù)網(wǎng)管在監(jiān)控網(wǎng)絡(luò)流量方面扮演著重要的角色。通過對網(wǎng)絡(luò)流量的實時監(jiān)測和分析,他們能夠了解網(wǎng)絡(luò)的使用情況和趨勢。流量監(jiān)測可以幫助數(shù)據(jù)網(wǎng)管發(fā)現(xiàn)異常的流量模式,如突然的流量峰值或持續(xù)的高流量消耗。這可能是由于網(wǎng)絡(luò)攻擊、病毒傳播或某個應(yīng)用程序的異常行為導致的。通過深入分析流量數(shù)據(jù),數(shù)據(jù)網(wǎng)管可以確定哪些應(yīng)用程序或用戶占用了大量的網(wǎng)絡(luò)資源,并采取相應(yīng)的措施進行優(yōu)化或限制。例如,如果發(fā)現(xiàn)某個部門在工作時間內(nèi)大量下載娛樂內(nèi)容,導致網(wǎng)絡(luò)擁堵,數(shù)據(jù)網(wǎng)管可以與該部門溝通,制定合理的網(wǎng)絡(luò)使用政策,以確保網(wǎng)絡(luò)資源的公平分配和有效利用。此外,流量監(jiān)測還為網(wǎng)絡(luò)規(guī)劃和升級提供了重要的依據(jù)。根據(jù)流量的增長趨勢,數(shù)據(jù)網(wǎng)管可以提前規(guī)劃網(wǎng)絡(luò)擴容,以滿足未來業(yè)務(wù)發(fā)展的需求。
數(shù)據(jù)網(wǎng)管在應(yīng)對網(wǎng)絡(luò)故障和災(zāi)難恢復方面起著關(guān)鍵作用。網(wǎng)絡(luò)故障可能隨時發(fā)生,如硬件故障、軟件錯誤、電力中斷等。當故障發(fā)生時,數(shù)據(jù)網(wǎng)管需要迅速做出判斷,確定故障的類型和范圍。他們會利用各種診斷工具和技術(shù),快速定位問題的根源。一旦確定了故障點,數(shù)據(jù)網(wǎng)管會采取相應(yīng)的措施進行修復。這可能包括更換損壞的設(shè)備、重新配置軟件設(shè)置、恢復數(shù)據(jù)備份等。在面對重大災(zāi)難,如火災(zāi)、地震或網(wǎng)絡(luò)攻擊導致整個網(wǎng)絡(luò)癱瘓時,數(shù)據(jù)網(wǎng)管會啟動預(yù)先制定的災(zāi)難恢復計劃。這個計劃包括將業(yè)務(wù)切換到備用網(wǎng)絡(luò)、恢復關(guān)鍵數(shù)據(jù)、重建系統(tǒng)等一系列復雜的操作。有了上訊數(shù)據(jù)網(wǎng)關(guān) DG,企業(yè)在數(shù)據(jù)傳輸過程中無需擔憂信息泄露風險。
2018年的萬豪酒店事件。在這起事件中,黑客成功越過了酒店數(shù)據(jù)庫的安全防護,未經(jīng)授權(quán)地訪問了數(shù)據(jù)庫,導致超過3億客戶的個人信息被泄露。這些信息包括了客戶的姓名、聯(lián)系方式、信用卡信息等敏感數(shù)據(jù)。這一泄露事件引起了廣泛的關(guān)注和憤慨,不僅對萬豪酒店的聲譽造成了重大影響,也對客戶的隱私權(quán)產(chǎn)生了嚴重威脅,甚至可能引發(fā)法律訴訟。上海上訊信息技術(shù)股份有限公司自主研發(fā)的數(shù)據(jù)網(wǎng)關(guān)DG通過對數(shù)據(jù)庫操作人員的細顆粒度權(quán)限管控、敏感數(shù)據(jù)動態(tài)脫敏、SQL審核、高危操作管控等,實現(xiàn)運維過程中的事前預(yù)防、事中管控和事后審計,為數(shù)據(jù)庫管理者提供簡單高效的數(shù)據(jù)管控解決方案,滿足內(nèi)部數(shù)據(jù)安全保護需求和外部監(jiān)管要求。
數(shù)據(jù)庫操作的安全風*是當今企業(yè)面臨的嚴峻挑戰(zhàn)之一。上訊數(shù)據(jù)網(wǎng)關(guān)功能
上訊數(shù)據(jù)網(wǎng)關(guān)DG通過對數(shù)據(jù)庫訪問人員的細顆粒度權(quán)限管控、敏感數(shù)據(jù)分類分級、敏感數(shù)據(jù)動態(tài)脫敏等.上訊數(shù)據(jù)網(wǎng)關(guān)銷售電話
數(shù)據(jù)網(wǎng)關(guān)DG提供以下關(guān)鍵功能,以確保敏感數(shù)據(jù)在訪問和處理過程中得到動態(tài)脫敏,防止敏感信息泄露。動態(tài)脫敏策略配置:數(shù)據(jù)網(wǎng)關(guān)DG支持根據(jù)類別或字段配置動態(tài)脫敏策略,確保不同類型的數(shù)據(jù)都得到適當?shù)碾[私保護,防范數(shù)據(jù)泄露風險。類別策略模板配置:數(shù)據(jù)網(wǎng)關(guān)DG支持創(chuàng)建和配置類別脫敏策略模板,以應(yīng)用于特定的敏感數(shù)據(jù)類別。通過靈活配置脫敏策略模板,可以針對不同數(shù)據(jù)類別應(yīng)用相應(yīng)的保護措施,提高數(shù)據(jù)安全性和合規(guī)性,并且可以將配置好的脫敏策略模板批量應(yīng)用于多個數(shù)據(jù)源。這一功能簡化了數(shù)據(jù)源的脫敏策略配置流程,避免了逐一設(shè)置的繁瑣操作。
上訊數(shù)據(jù)網(wǎng)關(guān)銷售電話