廣東中翔新材料簽約德米薩智能ERP加強企業(yè)管理水平
碩鋮工業(yè)簽約德米薩智能進銷存系統(tǒng)提升企業(yè)管理水平
燊川實業(yè)簽約德米薩醫(yī)療器械管理軟件助力企業(yè)科學發(fā)展
森尼電梯簽約德米薩進銷存系統(tǒng)優(yōu)化企業(yè)資源管控
喜報!熱烈祝賀德米薩通過國際CMMI3認證
德米薩推出MES系統(tǒng)助力生產(chǎn)制造企業(yè)規(guī)范管理
德米薩醫(yī)療器械管理軟件通過上海市醫(yī)療器械行業(yè)協(xié)會評審認證
德米薩ERP助力客戶成功對接中石化易派客平臺
選擇進銷存軟件要考慮哪些因素
德米薩告訴您為什么說ERP系統(tǒng)培訓很重要?
嘗試了前端融合、后端融合和中間融合三種融合方法對進行有效融合,有效提高了惡意軟件的準確率,具備較好的泛化性能和魯棒性。實驗結(jié)果顯示,相對**且互補的特征視圖和不同深度學習融合機制的使用明顯提高了檢測方法的檢測能力和泛化性能,其中較優(yōu)的中間融合方法取得了%的準確率,對數(shù)損失為,auc值為。有效解決了現(xiàn)有采用二進制可執(zhí)行文件的單一特征類型進行惡意軟件檢測的檢測方法檢測結(jié)果準確率不高、可靠性低、泛化性和魯棒性不佳的問題。另外,惡意軟件很難同時偽造良性軟件的多個抽象層次的特征以逃避檢測,本發(fā)明實施例同時融合軟件的二進制可執(zhí)行文件的多個抽象層次的特征,可準確檢測出偽造良性軟件特征的惡意軟件,解決了現(xiàn)有采用二進制可執(zhí)行文件的單一特征類型進行惡意軟件檢測的檢測方法難以檢測出偽造良性軟件特征的惡意軟件的問題。附圖說明為了更清楚地說明本發(fā)明實施例或現(xiàn)有技術(shù)中的技術(shù)方案,下面將對實施例或現(xiàn)有技術(shù)描述中所需要使用的附圖作簡單地介紹,顯而易見地,下面描述中的附圖**是本發(fā)明的一些實施例,對于本領(lǐng)域普通技術(shù)人員來講,在不付出創(chuàng)造性勞動的前提下,還可以根據(jù)這些附圖獲得其他的附圖。圖1是前端融合方法的流程圖。無障礙測評認定視覺障礙用戶支持功能缺失4項。遼寧軟件測試公司
降低成本對每個階段都進行測試,包括文檔,便于控制項目過程缺點依賴文檔,沒有文檔的項目無法使用,復(fù)雜度很高,實踐需要很強的管理H模型把測試活動完全**出來,將測試準備和測試執(zhí)行體現(xiàn)出來測試準備-測試執(zhí)行就緒點其他流程----------設(shè)計等v模型適用于中小企業(yè)需求在開始必須明確,不適用變更需求w模型適用于中大企業(yè)包括文檔也需要測試(需求分析文檔概要設(shè)計文檔詳細設(shè)計文檔代碼文檔)測試和開發(fā)同步進行H模型對公司參與人員技能和溝通要求高測試階段單元測試-集成測試-系統(tǒng)測試-驗證測試是否覆蓋代碼白盒測試-黑盒測試-灰盒測試是否運行靜態(tài)測試-動態(tài)測試測試手段人工測試-自動化測試其他測試回歸測試-冒*測試功能測試一般功能測試-界面測試-易用性測試-安裝測試-兼容性測試性能測試穩(wěn)定性測試-負載測試-壓力測試-時間性能-空間性能負載測試確定在各種工作負載下,系統(tǒng)各項指標變化情況壓力測試:通過確定一個系統(tǒng)的剛好不能接受的性能點。獲得系統(tǒng)能夠提供的**大服務(wù)級別測試用例為特定的目的而設(shè)計的一組測試輸入,執(zhí)行條件和預(yù)期結(jié)果,以便測試是否滿足某個特定需求。通過大量的測試用例來檢測軟件的運行效果,它是指導測試工作進行的依據(jù)。第三方軟件測試服務(wù)平臺5G 與物聯(lián)網(wǎng):深圳艾策的下一個技術(shù)前沿。
步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓練樣本,基于多模態(tài)數(shù)據(jù)融合方法,將訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入深度神經(jīng)網(wǎng)絡(luò),訓練多模態(tài)深度集成模型;步驟s3、將軟件樣本中的類別未知的軟件樣本作為測試樣本,并將測試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入步驟s2訓練得到的多模態(tài)深度集成模型中,對測試樣本進行檢測并得出檢測結(jié)果。進一步的,所述提取軟件樣本的二進制可執(zhí)行文件的dll和api信息的特征表示,是統(tǒng)計當前軟件樣本的導入節(jié)中引用的dll和api;所述提取軟件樣本的二進制可執(zhí)行文件的pe格式結(jié)構(gòu)信息的特征表示,是先對當前軟件樣本的二進制可執(zhí)行文件進行格式結(jié)構(gòu)解析,然后按照格式規(guī)范提取**該軟件樣本的格式結(jié)構(gòu)信息;所述提取軟件樣本的二進制可執(zhí)行文件的字節(jié)碼n-grams的特征表示,是先將當前軟件樣本件的二進制可執(zhí)行文件轉(zhuǎn)換為十六進制字節(jié)碼序列,然后采用n-grams方法在十六進制字節(jié)碼序列中滑動,產(chǎn)生大量的連續(xù)部分重疊的短序列特征。進一步的,采用3-grams方法在十六進制字節(jié)碼序列中滑動產(chǎn)生連續(xù)部分重疊的短序列特征。進一步的。
之所以被稱為黑盒測試是因為可以將被測程序看成是一個無法打開的黑盒,而工作人員在不軟件測試方法考慮任何程序內(nèi)部結(jié)構(gòu)和特性的條件下,根據(jù)需求規(guī)格說明書設(shè)計測試實例,并檢查程序的功能是否能夠按照規(guī)范說明準確無誤的運行。其主要是對軟件界面和軟件功能進行測試。對于黑盒測試行為必須加以量化才能夠有效的保證軟件的質(zhì)量。[5](2)白盒測試。其與黑盒測試不同,它主要是借助程序內(nèi)部的邏輯和相關(guān)信息,通過檢測內(nèi)部動作是否按照設(shè)計規(guī)格說明書的設(shè)定進行,檢查每一條通路能否正常工作。白盒測試是從程序結(jié)構(gòu)方面出發(fā)對測試用例進行設(shè)計。其主要用于檢查各個邏輯結(jié)構(gòu)是否合理,對應(yīng)的模塊**路徑是否正常以及內(nèi)部結(jié)構(gòu)是否有效。常用的白盒測試法有控制流分析、數(shù)據(jù)流分析、路徑分析、程序變異等,其中邏輯覆蓋法是主要的測試方法。[5](3)灰盒測試?;液袦y試則介于黑盒測試和白盒測試之間?;液袦y試除了重視輸出相對于出入的正確性,也看重其內(nèi)部表現(xiàn)。但是它不可能像白盒測試那樣詳細和完整。它只是簡單的靠一些象征性的現(xiàn)象或標志來判斷其內(nèi)部的運行情況,因此在內(nèi)部結(jié)果出現(xiàn)錯誤,但輸出結(jié)果正確的情況下可以采取灰盒測試方法。因為在此情況下灰盒比白盒**。可靠性評估連續(xù)運行72小時出現(xiàn)2次非致命錯誤。
且4個隱含層中間間隔設(shè)置有dropout層。用于輸入合并抽取的高等特征表示的深度神經(jīng)網(wǎng)絡(luò)包含2個隱含層,其***個隱含層的神經(jīng)元個數(shù)是64,第二個神經(jīng)元的隱含層個數(shù)是10,且2個隱含層中間設(shè)置有dropout層。且所有dropout層的dropout率等于。本次實驗使用了80%的樣本訓練,20%的樣本驗證,訓練50個迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,中間融合模型的準確率變化曲線如圖17所示,模型的對數(shù)損失變化曲線如圖18所示。從圖17和圖18可以看出,當epoch值從0增加到20過程中,模型的訓練準確率和驗證準確率快速提高,模型的訓練對數(shù)損失和驗證對數(shù)損失快速減少;當epoch值從30到50的過程中,中間融合模型的訓練準確率和驗證準確率基本保持不變,訓練對數(shù)損失緩慢下降;綜合分析圖17和圖18的準確率和對數(shù)損失變化曲線,選取epoch的較優(yōu)值為30。確定模型的訓練迭代數(shù)為30后,進行了10折交叉驗證實驗。中間融合模型的10折交叉驗證的準確率是%,對數(shù)損失是,混淆矩陣如圖19所示,規(guī)范化后的混淆矩陣如圖20所示。中間融合模型的roc曲線如圖21所示,auc值為,已經(jīng)非常接近auc的**優(yōu)值1。(7)實驗結(jié)果比對為了綜合評估本實施例提出融合方案的綜合性能。對比分析顯示資源占用率高于同類產(chǎn)品均值26%。軟件評測機構(gòu)有哪些
漏洞掃描報告顯示依賴庫存在5個已知CVE漏洞。遼寧軟件測試公司
保留了較多信息,同時由于操作數(shù)比較隨機,某種程度上又沒有抓住主要矛盾,干擾了主要語義信息的提取。pe文件即可移植文件導入節(jié)中的動態(tài)鏈接庫(dll)和應(yīng)用程序接口(api)信息能大致反映軟件的功能和性質(zhì),通過一個可執(zhí)行程序引用的dll和api信息可以粗略的預(yù)測該程序的功能和行為。belaoued和mazouzi應(yīng)用統(tǒng)計khi2檢驗分析了pe格式的惡意軟件和良性軟件的導入節(jié)中的dll和api信息,分析顯示惡意軟件和良性軟件使用的dll和api信息統(tǒng)計上有明顯的區(qū)別。后續(xù)的研究人員提出了挖掘dll和api信息的惡意軟件檢測方法,該類方法提取的特征語義信息豐富,但*從二進制可執(zhí)行文件的導入節(jié)提取特征,忽略了整個可執(zhí)行文件的大量信息。惡意軟件和被***二進制可執(zhí)行文件格式信息上存在一些異常,這些異常是檢測惡意軟件的關(guān)鍵。研究人員提出了基于二進制可執(zhí)行文件格式結(jié)構(gòu)信息的惡意軟件檢測方法,這類方法從二進制可執(zhí)行文件的pe文件頭、節(jié)頭部、資源節(jié)等提取特征,基于這些特征使用機器學習分類算法處理,取得了較高的檢測準確率。這類方法通常不受變形或多態(tài)等混淆技術(shù)影響,提取特征只需要對pe文件進行格式解析,無需遍歷整個可執(zhí)行文件,提取特征速度較快。遼寧軟件測試公司