對(duì)于蛋白質(zhì),AFM的出現(xiàn)極大的推動(dòng)了其研究進(jìn)展。AFM可以觀察一些常見的蛋白質(zhì),諸如白蛋白,血紅蛋白,胰島素及分子馬達(dá)和噬菌調(diào)理素吸附在圖同固體界面上的行為,對(duì)于了解生物相溶性,體外細(xì)胞的生長(zhǎng),蛋白質(zhì)的純化,膜中毒有很大幫助。例如,Dufrene 等利用AFM 考察了吸附在高分子支撐材料表面上的膠原蛋白的組裝行為。結(jié)合X-射線光電子能譜技術(shù)和輻射標(biāo)記技術(shù),他們提出了一個(gè)定性解釋其層狀結(jié)構(gòu)的幾何模型。AFM 實(shí)驗(yàn)證實(shí)了膠原蛋白組裝有時(shí)連續(xù),有時(shí)不連續(xù)的性質(zhì),通過形貌圖也提供了膠原蛋白纖維狀結(jié)構(gòu)特征。Quist等利用AFM 研究了白蛋白和豬胰島素在云母基底上的吸附行為,根據(jù)AFM 圖上不同尺寸的小丘狀物質(zhì)推測(cè),蛋白質(zhì)有時(shí)發(fā)生聚集,有時(shí)分散分布。Epand 等則利用AFM 技術(shù)研究了一類感冒病毒的紅血球凝集素,展示了一種膜溶原蛋白自組裝形成病毒折疊蛋白分子外域的實(shí)時(shí)過程。從而以納米級(jí)分辨率獲得表面形貌結(jié)構(gòu)信息及表面粗糙度信息;南平原子力顯微鏡測(cè)試價(jià)格
SFM除了形貌測(cè)量之外,還能測(cè)量力對(duì)探針-樣品間距離的關(guān)系曲線Zt(Zs)。它幾乎包含了所有關(guān)于樣品和針尖間相互作用的必要信息。當(dāng)微懸臂固定端被垂直接近,然后離開樣品表面時(shí),微懸臂和樣品間產(chǎn)生了相對(duì)移動(dòng)。而在這個(gè)過程中微懸臂自由端的探針也在接近、甚至壓入樣品表面,然后脫離,此時(shí)原子力顯微鏡(AFM)測(cè)量并記錄了探針?biāo)惺艿牧Γ瑥亩玫搅η€。Zs是樣品的移動(dòng),Zt是微懸臂的移動(dòng)。這兩個(gè)移動(dòng)近似于垂直于樣品表面。用懸臂彈性系數(shù)c乘以Zt,可以得到力F=c·Zt。如果忽略樣品和針尖彈性變形,可以通過s=Zt-Zs給出針尖和樣品間相互作用距離s。這樣能從Zt(Zs)曲線決定出力-距離關(guān)系F(s)。這個(gè)技術(shù)可以用來測(cè)量探針尖和樣品表面間的排斥力或長(zhǎng)程吸引力,揭示定域的化學(xué)和機(jī)械性質(zhì),像粘附力和彈力,甚至吸附分子層的厚度。如果將探針用特定分子或基團(tuán)修飾,利用力曲線分析技術(shù)就能夠給出特異結(jié)合分子間的力或鍵的強(qiáng)度,其中也包括特定分子間的膠體力以及疏水力、長(zhǎng)程引力等。濟(jì)南原子力顯微鏡測(cè)試服務(wù)接觸模式從概念上來理解,接觸模式是AFM直接的成像模式。
原子力顯微鏡的工作模式是以針尖與樣品之間的作用力的形式來分類的。主要有以下3種操作模式:接觸模式(contactmode),非接觸模式(non-contactmode)和敲擊模式(tappingmode);接觸模式從概念上來理解,接觸模式是AFM直接的成像模式。AFM在整個(gè)掃描成像過程之中,探針針尖始終與樣品表面保持緊密的接觸,而相互作用力是排斥力。掃描時(shí),懸臂施加在針尖上的力有可能破壞試樣的表面結(jié)構(gòu),因此力的大小范圍在10-10~10-6N。若樣品表面柔嫩而不能承受這樣的力,便不宜選用接觸模式對(duì)樣品表面進(jìn)行成像。非接觸模式非接觸模式探測(cè)試樣表面時(shí)懸臂在距離試樣表面上方5~10nm的距離處振蕩。這時(shí),樣品與針尖之間的相互作用由范德華力控制,通常為10-12N,樣品不會(huì)被破壞,而且針尖也不會(huì)被污染,特別適合于研究柔嫩物體的表面。這種操作模式的不利之處在于要在室溫大氣環(huán)境下實(shí)現(xiàn)這種模式十分困難。因?yàn)闃悠繁砻娌豢杀苊獾貢?huì)積聚薄薄的一層水,它會(huì)在樣品與針尖之間搭起一小小的毛細(xì)橋,將針尖與表面吸在一起,從而增加對(duì)表面的壓力。
原子力顯微鏡的基本原理是:將一個(gè)對(duì)微弱力極敏感的微懸臂一端固定,另一端有一微小的針尖,針尖與樣品表面輕輕接觸,由于針尖原子與樣品表面原子間存在極微弱的排斥力,通過在掃描時(shí)控制這種力的恒定,帶有針尖的微懸臂將對(duì)應(yīng)于針尖與樣品表面原子間作用力的等位面而在垂直于樣品的表面方向起伏運(yùn)動(dòng)。利用光學(xué)檢測(cè)法或隧道電流檢測(cè)法,可測(cè)得微懸臂對(duì)應(yīng)于掃描各點(diǎn)的位置變化,從而可以獲得樣品表面形貌的信息。我們以激光檢測(cè)原子力顯微鏡(AtomicForceMicroscopeEmployingLaserBeamDeflectionforForceDetection,Laser-AFM)來詳細(xì)說明其工作原理。會(huì)使得懸臂cantilever擺動(dòng),當(dāng)激光照射在微懸臂的末端時(shí),其反射光的位置也會(huì)因?yàn)閼冶蹟[動(dòng)而有所改變;
隨著科學(xué)技術(shù)的發(fā)展,生命科學(xué)開始向定量科學(xué)方向發(fā)展。大部分實(shí)驗(yàn)的研究重點(diǎn)已經(jīng)變成生物大分子,特別是核酸和蛋白質(zhì)的結(jié)構(gòu)及其相關(guān)功能的關(guān)系;因?yàn)锳FM的工作范圍很寬,可以在自然狀態(tài)(空氣或者液體)下對(duì)生物醫(yī)學(xué)樣品直接進(jìn)行成像,分辨率也很高。因此,AFM已成為研究生物醫(yī)學(xué)樣品和生物大分子的重要工具之一。AFM應(yīng)用主要包括三個(gè)方面:生物細(xì)胞的表面形態(tài)觀測(cè);生物大分子的結(jié)構(gòu)及其他性質(zhì)的觀測(cè)研究;生物分子之間力譜曲線的觀測(cè)。積分增益和比例增益幾個(gè)參數(shù)的設(shè)置來對(duì)該反饋回路的特性進(jìn)行控制;金華原子力顯微鏡測(cè)試廠家
二極管激光器(LaserDiode)發(fā)出的激光束經(jīng)過光學(xué)系統(tǒng)聚焦在微懸臂(Cantilever)背面;南平原子力顯微鏡測(cè)試價(jià)格
AFM液相成像技術(shù)的優(yōu)點(diǎn)在于消除了毛細(xì)作用力,針尖粘滯力,更重要的是可以在接近生理?xiàng)l件下考察DNA 的單分子行為。DNA 分子在緩沖溶液或水溶液中與基底結(jié)合不緊密,是液相AFM面臨的主要困難之一。硅烷化試劑,如3-氨丙基三乙氧基硅烷(APTES)和陽(yáng)離子磷脂雙層修飾的云母基底固定DNA 分子,再在緩沖液中利用AFM 成像,可以解決這一難題。在氣相條件下陽(yáng)離子參與DNA的沉積已經(jīng)發(fā)展十分成熟,適于AFM 觀察。在液相條件下,APTES 修飾的云母基底較常用。DNA的許多構(gòu)象諸如彎曲,超螺旋,小環(huán)結(jié)構(gòu),三鏈螺旋結(jié)構(gòu),DNA 三通接點(diǎn)構(gòu)象,DNA 復(fù)制和重組的中間體構(gòu)象,分子開關(guān)結(jié)構(gòu)和藥物分子插入到DNA 鏈中的相互作用都地被AFM考察,獲得了許多新的理解。南平原子力顯微鏡測(cè)試價(jià)格