4)建立與用戶或客戶的聯(lián)系,收集他們對(duì)測(cè)試的需求和建議。(II)制訂技術(shù)培訓(xùn)計(jì)劃為高效率地完成好測(cè)試工作,測(cè)試人員必須經(jīng)過適當(dāng)?shù)呐嘤?xùn)。制訂技術(shù)培訓(xùn)規(guī)劃有3個(gè)子目標(biāo):1)制訂**的培訓(xùn)計(jì)劃,并在管理上提供包括經(jīng)費(fèi)在內(nèi)的支持。2)制訂培訓(xùn)目標(biāo)和具體的培訓(xùn)計(jì)劃。3)成立培訓(xùn)組,配備相應(yīng)的工具,設(shè)備和教材(III)軟件全生命周期測(cè)試提高測(cè)試成熟度和改善軟件產(chǎn)品質(zhì)量都要求將測(cè)試工作與軟件生命周期中的各個(gè)階段聯(lián)系起來。該目標(biāo)有4個(gè)子目標(biāo):1)將測(cè)試階段劃分為子階段,并與軟件生命周期的各階段相聯(lián)系。2)基于已定義的測(cè)試子階段,采用軟件生命周期V字模型。3)制訂與淵試相關(guān)的工作產(chǎn)品的標(biāo)準(zhǔn)。4)建立測(cè)試人員與開發(fā)人員共同工作的機(jī)制。這種機(jī)制有利于促進(jìn)將測(cè)試活動(dòng)集成于軟件生命周期中(IV)控制和監(jiān)視測(cè)試過程為控制和監(jiān)視測(cè)試過程,軟件**需采取相應(yīng)措施,如:制訂測(cè)試產(chǎn)品的標(biāo)準(zhǔn),制訂與測(cè)試相關(guān)的偶發(fā)事件的處理預(yù)案,確定測(cè)試?yán)锍瘫?,確定評(píng)估測(cè)試效率的度量,建立測(cè)試日志等。控制和監(jiān)視測(cè)試過程有3個(gè)子目標(biāo):1)制訂控制和監(jiān)視測(cè)試過程的機(jī)制和政策。2)定義,記錄并分配一組與測(cè)試過程相關(guān)的基本測(cè)量。3)開發(fā),記錄并文檔化一組糾偏措施和偶發(fā)事件處理預(yù)案。兼容性測(cè)試涵蓋35款設(shè)備,通過率91.4%。天津計(jì)算機(jī)軟件檢測(cè)報(bào)告
[1]中文名軟件測(cè)試方法外文名SoftwareTestingMethod目的測(cè)試軟件性能所屬行業(yè)計(jì)算機(jī)作用選擇合適的軟件目錄1概述2原則3分類?靜態(tài)測(cè)試和動(dòng)態(tài)測(cè)試?黑盒測(cè)試、白盒測(cè)試和灰盒測(cè)試?手動(dòng)測(cè)試和自動(dòng)化測(cè)試4不同階段測(cè)試?單元測(cè)試?集成測(cè)試?系統(tǒng)測(cè)試?驗(yàn)收測(cè)試5重要性軟件測(cè)試方法概述編輯軟件測(cè)試方法的目的包括:發(fā)現(xiàn)軟件程序中的錯(cuò)誤、對(duì)軟件是否符合設(shè)計(jì)要求,以及是否符合合同中所要達(dá)到的技術(shù)要求,進(jìn)行有關(guān)驗(yàn)證以及評(píng)估軟件的質(zhì)量。**終實(shí)現(xiàn)將高質(zhì)量的軟件系統(tǒng)交給用戶的目的。而軟件的基本測(cè)試方法主要有靜態(tài)測(cè)試和動(dòng)態(tài)測(cè)試、功能測(cè)試、性能測(cè)試、黑盒測(cè)試和白盒測(cè)試等等。[2]軟件測(cè)試方法眾多,比較常用到的測(cè)試方法有等價(jià)類劃分、場(chǎng)景法,偶爾會(huì)使用到的測(cè)試方法有邊界值和判定表,還有包括不經(jīng)常使用到的正交排列法和測(cè)試大綱法。其中等價(jià)類劃分、邊界值分析、判定表等屬于黑盒測(cè)試方法;只對(duì)功能是否可以滿足規(guī)定要求進(jìn)行檢查,主要用于軟件的確認(rèn)測(cè)試階段。白盒測(cè)試也叫做結(jié)構(gòu)測(cè)試或邏輯驅(qū)動(dòng)測(cè)試,是基于覆蓋的全部代碼和路徑、條件的測(cè)試,通過測(cè)試檢測(cè)產(chǎn)品內(nèi)部性能,檢驗(yàn)程序中的路徑是否可以按照要求完成工作,但是并不對(duì)功能進(jìn)行測(cè)試,主要用于軟件的驗(yàn)證。合肥軟件測(cè)試公司多平臺(tái)兼容性測(cè)試顯示Linux環(huán)境下存在驅(qū)動(dòng)適配問題。
所述生成軟件樣本的dll和api信息特征視圖,是先統(tǒng)計(jì)所有類別已知的軟件樣本的pe可執(zhí)行文件引用的dll和api信息,從中選取引用頻率**高的多個(gè)dll和api信息;然后判斷當(dāng)前的軟件樣本的導(dǎo)入節(jié)里是否存在選擇出的某個(gè)引用頻率**高的dll和api信息,如存在,則將當(dāng)前軟件樣本的該dll或api信息以1表示,否則將其以0表示,從而對(duì)當(dāng)前軟件樣本的所有dll和api信息進(jìn)行表示形成當(dāng)前軟件樣本的dll和api信息特征視圖。進(jìn)一步的,所述生成軟件樣本的格式信息特征視圖,是從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,形成當(dāng)前軟件樣本的格式信息特征視圖。進(jìn)一步的,所述從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,是從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中確定存在特定格式異常的pe格式結(jié)構(gòu)特征以及存在明顯的統(tǒng)計(jì)差異的格式結(jié)構(gòu)特征;所述特定格式異常包括:(1)代碼從**后一節(jié)開始執(zhí)行,(2)節(jié)頭部可疑的屬性,(3)pe可選頭部有效尺寸的值不正確,(4)節(jié)之間的“間縫”,(5)可疑的代碼重定向,(6)可疑的代碼節(jié)名稱,(7)可疑的頭部***,(8)來自,(9)導(dǎo)入地址表被修改,(10)多個(gè)pe頭部,(11)可疑的重定位信息,。
在介紹諸多知識(shí)點(diǎn)的過程當(dāng)中結(jié)合直觀形象的圖表或?qū)嶋H案例進(jìn)行深入淺出的分析,從而使讀者可以更好地理解秋掌握軟件測(cè)試?yán)碚撝R(shí),并迅速地運(yùn)用到實(shí)際測(cè)試工作中去。本書適合作為各層次高等院校計(jì)算機(jī)及相關(guān)的教學(xué)用書,也可作為軟件測(cè)試人員的參考書。目錄前言第1章概述第2章軟件測(cè)試基礎(chǔ)第3章單元測(cè)試第4章集成測(cè)試第5章系統(tǒng)測(cè)試……軟件測(cè)試技術(shù)圖書2書名:軟件測(cè)試技術(shù)層次:高職高專配套:電子課件作者:徐芳出版社:機(jī)械工業(yè)出版社出版時(shí)間:2011-6-21ISBN:開本:16開定價(jià):¥內(nèi)容簡(jiǎn)介本書根據(jù)軟件測(cè)試教學(xué)的需要,結(jié)合讀者對(duì)象未來的職業(yè)要求和定位,除了盡力***闡述軟件測(cè)試技術(shù)基本概念外,采取了計(jì)劃、設(shè)計(jì)與開發(fā)、執(zhí)行這樣的工程步驟來描述軟件測(cè)試的相關(guān)知識(shí),使學(xué)生在學(xué)習(xí)軟件測(cè)試的技術(shù)知識(shí)時(shí),能夠同時(shí)獲得工程化思維方式的訓(xùn)練。本書共7章。第1章介紹軟件測(cè)試的基本知識(shí);第2章介紹如何制定軟件測(cè)試計(jì)劃;第3章介紹測(cè)試用例的設(shè)計(jì)和相關(guān)技術(shù);第4章介紹執(zhí)行測(cè)試中相關(guān)技術(shù)和方法;第5章介紹實(shí)際工作中各種測(cè)試方法;第6章介紹MI公司的一套測(cè)試工具的使用,包括功能、性能和測(cè)試管理工具;第7章通過一個(gè)實(shí)例,給出了完整的與軟件測(cè)試相關(guān)的文檔。無障礙測(cè)評(píng)認(rèn)定視覺障礙用戶支持功能缺失4項(xiàng)。
將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入深度神經(jīng)網(wǎng)絡(luò),訓(xùn)練多模態(tài)深度集成模型;(1)方案一:采用前端融合(early-fusion)方法,首先合并訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的特征,融合成一個(gè)單一的特征向量空間,然后將其作為深度神經(jīng)網(wǎng)絡(luò)模型的輸入,訓(xùn)練多模態(tài)深度集成模型;(2)方案二:首先利用訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖分別訓(xùn)練深度神經(jīng)網(wǎng)絡(luò)模型,合并訓(xùn)練的三個(gè)深度神經(jīng)網(wǎng)絡(luò)模型的決策輸出,并將其作為感知機(jī)的輸入,訓(xùn)練得到**終的多模態(tài)深度集成模型;(3)方案三:采用中間融合(intermediate-fusion)方法,首先使用三個(gè)深度神經(jīng)網(wǎng)絡(luò)分別學(xué)習(xí)訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的高等特征表示,并合并學(xué)習(xí)得到的訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的高等特征表示融合成一個(gè)單一的特征向量空間,然后將其作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入,訓(xùn)練得到多模態(tài)深度神經(jīng)網(wǎng)絡(luò)模型。步驟s3、將軟件樣本中的類別未知的軟件樣本作為測(cè)試樣本。云計(jì)算與 AI 融合:深圳艾策的創(chuàng)新解決方案。軟件驗(yàn)收安全檢測(cè)
自動(dòng)化測(cè)試發(fā)現(xiàn)7個(gè)邊界條件未處理的異常情況。天津計(jì)算機(jī)軟件檢測(cè)報(bào)告
并將測(cè)試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入步驟s2訓(xùn)練得到的多模態(tài)深度集成模型中,對(duì)測(cè)試樣本進(jìn)行檢測(cè)并得出檢測(cè)結(jié)果。實(shí)驗(yàn)結(jié)果與分析(1)樣本數(shù)據(jù)集選取實(shí)驗(yàn)評(píng)估使用了不同時(shí)期的惡意軟件和良性軟件樣本,包含了7871個(gè)良性軟件樣本和8269個(gè)惡意軟件樣本,其中4103個(gè)惡意軟件樣本是2011年以前發(fā)現(xiàn)的,4166個(gè)惡意軟件樣本是近年來新發(fā)現(xiàn)的;3918個(gè)良性軟件樣本是從全新安裝的windowsxpsp3系統(tǒng)中收集的,3953個(gè)良性軟件樣本是從全新安裝的32位windows7系統(tǒng)中收集的。所有的惡意軟件樣本都是從vxheavens網(wǎng)站中收集的,所有的樣本格式都是windowspe格式的,樣本數(shù)據(jù)集構(gòu)成如表1所示。表1樣本數(shù)據(jù)集類別惡意軟件樣本良性軟件樣本早期樣本41033918近期樣本41663953合計(jì)82697871(2)評(píng)價(jià)指標(biāo)及方法分類性能主要用兩個(gè)指標(biāo)來評(píng)估:準(zhǔn)確率和對(duì)數(shù)損失。準(zhǔn)確率測(cè)量所有預(yù)測(cè)中正確預(yù)測(cè)的樣本占總樣本的比例,*憑準(zhǔn)確率通常不足以評(píng)估預(yù)測(cè)的魯棒性,因此還需要使用對(duì)數(shù)損失。對(duì)數(shù)損失(logarithmicloss),也稱交叉熵?fù)p失(cross-entropyloss),是在概率估計(jì)上定義的,用于測(cè)量預(yù)測(cè)類別與真實(shí)類別之間的差距大小。天津計(jì)算機(jī)軟件檢測(cè)報(bào)告