服務(wù)器運(yùn)維:確保系統(tǒng)穩(wěn)定與安全的關(guān)鍵實(shí)踐
服務(wù)器運(yùn)維:確保系統(tǒng)穩(wěn)定與安全
優(yōu)化數(shù)據(jù)運(yùn)維,提升軟件效能
企業(yè)IT服務(wù):驅(qū)動(dòng)業(yè)務(wù)發(fā)展的主要引擎
關(guān)于安防監(jiān)控的前景介紹
漲知識(shí),監(jiān)控安裝這些注意事項(xiàng)你需要了解
智能化建設(shè)發(fā)展趨勢(shì)分析
廣信云保障您的業(yè)務(wù)穩(wěn)定運(yùn)行
選擇IT外包有哪些注意事項(xiàng)?
后端融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對(duì)數(shù)損失是,混淆矩陣如圖13所示,規(guī)范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構(gòu)如圖16所示,中間融合方式用深度神經(jīng)網(wǎng)絡(luò)從三種模態(tài)的特征分別抽取高等特征表示,然后合并學(xué)習(xí)得到的特征表示,再作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入訓(xùn)練模型,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。圖16中,用于抽取dll和api信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含3個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是128,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且3個(gè)隱含層中間間隔設(shè)置有dropout層。用于抽取格式信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,其第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且2個(gè)隱含層中間設(shè)置有dropout層。用于抽取字節(jié)碼n-grams特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含4個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是512,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是384,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是256,第四個(gè)隱含層的神經(jīng)元個(gè)數(shù)是125。艾策科技發(fā)布產(chǎn)品:智能企業(yè)管理平臺(tái)。中控軟件性能檢測(cè)報(bào)告
圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構(gòu)圖。圖5是前端融合模型的準(zhǔn)確率變化曲線圖。圖6是前端融合模型的對(duì)數(shù)損失變化曲線圖。圖7是前端融合模型的檢測(cè)混淆矩陣示意圖。圖8是規(guī)范化前端融合模型的檢測(cè)混淆矩陣示意圖。圖9是前端融合模型的roc曲線圖。圖10是后端融合模型的架構(gòu)圖。圖11是后端融合模型的準(zhǔn)確率變化曲線圖。圖12是后端融合模型的對(duì)數(shù)損失變化曲線圖。圖13是后端融合模型的檢測(cè)混淆矩陣示意圖。圖14是規(guī)范化后端融合模型的檢測(cè)混淆矩陣示意圖。圖15是后端融合模型的roc曲線圖。圖16是中間融合模型的架構(gòu)圖。圖17是中間融合模型的準(zhǔn)確率變化曲線圖。圖18是中間融合模型的對(duì)數(shù)損失變化曲線圖。圖19是中間融合模型的檢測(cè)混淆矩陣示意圖。圖20是規(guī)范化中間融合模型的檢測(cè)混淆矩陣示意圖。圖21是中間融合模型的roc曲線圖。具體實(shí)施方式下面將結(jié)合本發(fā)明實(shí)施例中的附圖,對(duì)本發(fā)明實(shí)施例中的技術(shù)方案進(jìn)行清楚、完整地描述,顯然,所描述的實(shí)施例**是本發(fā)明一部分實(shí)施例,而不是全部的實(shí)施例。基于本發(fā)明中的實(shí)施例,本領(lǐng)域普通技術(shù)人員在沒有做出創(chuàng)造性勞動(dòng)前提下所獲得的所有其他實(shí)施例,都屬于本發(fā)明保護(hù)的范圍。軟件代碼安全審計(jì)報(bào)告數(shù)據(jù)安全與合規(guī):艾策科技的最佳實(shí)踐。
12)把節(jié)裝入到vmm的地址空間,(13)可選頭部的sizeofcode域取值不正確,(14)含有可疑標(biāo)志;所述存在明顯的統(tǒng)計(jì)差異的格式結(jié)構(gòu)特征包括:(1)無(wú)證書表;(2)調(diào)試數(shù)據(jù)明顯小于正常文件,(3).text、.rsrc、.reloc和.rdata的characteristics屬性異常,(4)資源節(jié)的資源個(gè)數(shù)少于正常文件。進(jìn)一步的,所述生成軟件樣本的字節(jié)碼n-grams特征視圖的具體實(shí)現(xiàn)過程如下:先從當(dāng)前軟件樣本的所有短序列特征中選取詞頻tf**高的多個(gè)短序列特征;然后計(jì)算選取的每個(gè)短序列特征的逆向文件頻率idf與詞頻tf的乘積,并將其作為選取的每個(gè)短序列特征的特征值,,表示該短序列特征表示其所在軟件樣本的能力越強(qiáng);**后在選取的詞頻tf**高的多個(gè)短序列特征中選取,生成字節(jié)碼n-grams特征視圖;:=tf×idf;其中,ni,j是短序列特征i在軟件樣本j中出現(xiàn)的次數(shù),∑knk,j指軟件樣本j中所有短序列特征出現(xiàn)的次數(shù)之和,k為短序列特征總數(shù),1≤i≤k;其中,|d|指軟件樣本j的總數(shù),|{j:i∈j}|指包含短序列特征i的軟件樣本j的數(shù)目。進(jìn)一步的,所述步驟s2采用中間融合方法訓(xùn)練多模態(tài)深度集成模型。
幫助客戶提升內(nèi)部技術(shù)團(tuán)隊(duì)能力。例如,某三甲醫(yī)院在采用艾策科技的醫(yī)療信息化系統(tǒng)檢測(cè)方案后,不僅系統(tǒng)漏洞率下降45%,其IT團(tuán)隊(duì)的安全意識(shí)與應(yīng)急響應(yīng)能力也提升。技術(shù)創(chuàng)新未來(lái)方向艾策科技創(chuàng)始人兼CTO表示:“作為軟件檢測(cè)公司,我們始終將技術(shù)創(chuàng)新視為競(jìng)爭(zhēng)力。未來(lái),公司將重點(diǎn)投入AI算法優(yōu)化、邊緣計(jì)算檢測(cè)等前沿領(lǐng)域,為電力能源、政企單位等行業(yè)提供更高效、更智能的質(zhì)量保障服務(wù)?!鄙钲诎咝畔⒖萍加邢薰臼且患伊⒆阌诨浉郯拇鬄硡^(qū),依托信息技術(shù)產(chǎn)業(yè),面向全國(guó)客戶提供專業(yè)、可靠服務(wù)的第三方CMACNAS檢測(cè)機(jī)構(gòu)。在檢測(cè)服務(wù)過程中,公司始終堅(jiān)持以客戶需求為本,秉承公平公正的第三方檢測(cè)要求,遵循國(guó)家檢測(cè)標(biāo)準(zhǔn)規(guī)范,確保檢測(cè)數(shù)據(jù)和結(jié)果準(zhǔn)確可靠,運(yùn)用前沿A人工智能技術(shù)提高檢測(cè)效率。我們追求創(chuàng)造優(yōu)異的社會(huì)價(jià)值,我們致力于打造公司成為第三方檢測(cè)行業(yè)的行業(yè)榜樣。滲透測(cè)試報(bào)告暴露2個(gè)高危API接口需緊急加固。
它已被擴(kuò)展成與軟件生命周期融為一體的一組已定義的活動(dòng)。測(cè)試活動(dòng)遵循軟件生命周期的V字模型。測(cè)試人員在需求分析階段便開始著手制訂測(cè)試計(jì)劃,并根據(jù)用戶或客戶需求建立測(cè)試目標(biāo),同時(shí)設(shè)計(jì)測(cè)試用例并制訂測(cè)試通過準(zhǔn)則。在集成級(jí)上,應(yīng)成立軟件測(cè)試**,提供測(cè)試技術(shù)培訓(xùn),關(guān)鍵的測(cè)試活動(dòng)應(yīng)有相應(yīng)的測(cè)試工具予以支持。在該測(cè)試成熟度等級(jí)上,沒有正式的評(píng)審程序,沒有建立質(zhì)量過程和產(chǎn)品屬性的測(cè)試度量。集成級(jí)要實(shí)現(xiàn)4個(gè)成熟度目標(biāo),它們分別是:建立軟件測(cè)試**,制訂技術(shù)培訓(xùn)計(jì)劃,軟件全壽命周期測(cè)試,控制和監(jiān)視測(cè)試過程。(I)建立軟件測(cè)試**軟件測(cè)試的過程及質(zhì)量對(duì)軟件產(chǎn)品質(zhì)量有直接影響。由于測(cè)試往往是在時(shí)間緊,壓力大的情況下所完成的一系列復(fù)雜的活動(dòng),因此應(yīng)由訓(xùn)練有素的人員組成測(cè)試組。測(cè)試組要完成與測(cè)試有關(guān)的多種活動(dòng),包括負(fù)責(zé)制訂測(cè)試計(jì)劃,實(shí)施測(cè)試執(zhí)行,記錄測(cè)試結(jié)果,制訂與測(cè)試有關(guān)的標(biāo)準(zhǔn)和測(cè)試度量,建立鍘試數(shù)據(jù)庫(kù),測(cè)試重用,測(cè)試**以及測(cè)試評(píng)價(jià)等。建立軟件測(cè)試**要實(shí)現(xiàn)4個(gè)子目標(biāo):1)建立全**范圍內(nèi)的測(cè)試組,并得到上級(jí)管理層的領(lǐng)導(dǎo)和各方面的支持,包括經(jīng)費(fèi)支持。2)定義測(cè)試組的作用和職責(zé)。3)由訓(xùn)練有素的人員組成測(cè)試組。深圳艾策信息科技:賦能中小企業(yè)的數(shù)字化未來(lái)。軟件功能檢測(cè)實(shí)驗(yàn)室
網(wǎng)絡(luò)安全新時(shí)代:深圳艾策的防御策略解析。中控軟件性能檢測(cè)報(bào)告
本發(fā)明屬于惡意軟件防護(hù)技術(shù)領(lǐng)域::,涉及一種基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測(cè)方法。背景技術(shù):::惡意軟件是指在未明確提示用戶或未經(jīng)用戶許可的情況下,故意編制或設(shè)置的,對(duì)網(wǎng)絡(luò)或系統(tǒng)會(huì)產(chǎn)生威脅或潛在威脅的計(jì)算機(jī)軟件。常見的惡意軟件有計(jì)算機(jī)**(簡(jiǎn)稱**)、特洛伊木馬(簡(jiǎn)稱木馬)、計(jì)算機(jī)蠕蟲(簡(jiǎn)稱蠕蟲)、后門、邏輯**等。惡意軟件可能在用戶不知情的情況下竊取計(jì)算機(jī)用戶的信息和隱私,也可能非法獲得計(jì)算機(jī)系統(tǒng)和網(wǎng)絡(luò)資源的控制,破壞計(jì)算機(jī)和網(wǎng)絡(luò)的可信性、完整性和可用性,從而為惡意軟件控制者謀取非法利益。騰訊安全發(fā)布的《2017年度互聯(lián)網(wǎng)安全報(bào)告》顯示,2017年騰訊電腦管家pc端總計(jì)攔截**近30億次,平均每月攔截木馬**近,共發(fā)現(xiàn)**或木馬***。這些數(shù)目龐大、名目繁多的惡意軟件侵蝕著我國(guó)的***、經(jīng)濟(jì)、文化、***等各個(gè)領(lǐng)域的信息安全,帶來(lái)了前所未有的挑戰(zhàn)。當(dāng)前的反**軟件主要采用基于特征碼的檢測(cè)方法,這種方法通過對(duì)代碼進(jìn)行充分研究,獲得惡意軟件特征值(即每種惡意軟件所獨(dú)有的十六進(jìn)制代碼串),如字節(jié)序列、特定的字符串等,通過匹配查找軟件中是否包含惡意軟件特征庫(kù)中的特征碼來(lái)判斷其是否為惡意軟件。中控軟件性能檢測(cè)報(bào)告