個(gè)性化需求,專屬服務(wù):海綿定制如何滿足多樣化市場(chǎng)-海綿定制
如何選擇合適的過(guò)濾綿:提升過(guò)濾效率與延長(zhǎng)使用壽命-過(guò)濾綿
揭秘物流網(wǎng)格海綿:如何在運(yùn)輸中提供良好緩沖效果-網(wǎng)格海綿
寵物海綿爬梯:為寵物量身定制的沙發(fā)與床間通行神器-海綿爬梯
寵物友好家居設(shè)計(jì):海綿爬梯讓沙發(fā)、樓梯、床觸手可及-海綿爬梯
如何挑選高效耐用的杯刷海綿:一份實(shí)用的購(gòu)買指南-杯刷海綿
淘氣堡海綿材質(zhì)對(duì)比,哪種更適合你家孩子-淘氣堡海綿
海綿鞋擦:輕松去除鞋面污漬-海綿鞋擦
高效去除洗衣機(jī)內(nèi)毛發(fā):洗衣球海綿的神奇功效-洗衣球海綿
寵物海綿爬梯:安全、舒適且有趣-小型寵物海綿爬梯輔助器報(bào)價(jià)
本書(shū)內(nèi)容充實(shí)、實(shí)用性強(qiáng),可作為高職高專院校計(jì)算機(jī)軟件軟件測(cè)試技術(shù)課程的教材,也可作為有關(guān)軟件測(cè)試的培訓(xùn)教材,對(duì)從事軟件測(cè)試實(shí)際工作的相關(guān)技術(shù)人員也具有一定的參考價(jià)值。目錄前言第1章軟件測(cè)試基本知識(shí)第2章測(cè)試計(jì)劃第3章測(cè)試設(shè)計(jì)和開(kāi)發(fā)第4章執(zhí)行測(cè)試第5章測(cè)試技術(shù)與應(yīng)用第6章軟件測(cè)試工具第7章測(cè)試文檔實(shí)例附錄IEEE模板參考文獻(xiàn)軟件測(cè)試技術(shù)圖書(shū)3基本信息書(shū)號(hào):軟件測(cè)試技術(shù)7-113-07054作者:李慶義定價(jià):出版日期:套系名稱:21世紀(jì)高校計(jì)算機(jī)應(yīng)用技術(shù)系列規(guī)劃教材出版單位:**鐵道出版社內(nèi)容簡(jiǎn)介本書(shū)主要介紹軟件適用測(cè)試技術(shù)。內(nèi)容分為三部分,***部分為概念基礎(chǔ)、測(cè)試?yán)碚摰谋尘凹鞍l(fā)展,簡(jiǎn)要地分析了當(dāng)前測(cè)試技術(shù)的現(xiàn)狀;第二部分介紹軟件測(cè)試的程序分析技術(shù)、測(cè)試技術(shù),軟件測(cè)試的方法和策略,分析了軟件業(yè)在測(cè)試方面的研究成果,并總結(jié)了測(cè)試的基本原則和一些好的實(shí)踐經(jīng)驗(yàn);第三部分介紹了兩種測(cè)試工具軟件——基于Windows的WinRunner和服務(wù)器負(fù)載測(cè)試軟件WAS。本書(shū)結(jié)合實(shí)際,從一些具體的實(shí)例出發(fā),介紹軟件測(cè)試的一些基本概念和方法,分析出軟件測(cè)試的基本理論知識(shí),適用性比較強(qiáng)。安全審計(jì)發(fā)現(xiàn)日志模塊存在敏感信息明文存儲(chǔ)缺陷。軟件驗(yàn)收壓力測(cè)試
置環(huán)境操作系統(tǒng)+服務(wù)器+數(shù)據(jù)庫(kù)+軟件依賴5執(zhí)行用例6回歸測(cè)試及缺陷**7輸出測(cè)試報(bào)告8測(cè)試結(jié)束軟件架構(gòu)BSbrowser瀏覽器+server服務(wù)器CSclient客戶端+server服務(wù)器1標(biāo)準(zhǔn)上BS是在服務(wù)器和瀏覽器都存在的基礎(chǔ)上開(kāi)發(fā)2效率BS中負(fù)擔(dān)在服務(wù)器上CS中的客戶端會(huì)分擔(dān),CS效率更高3安全BS數(shù)據(jù)依靠http協(xié)議進(jìn)行明文輸出不安全4升級(jí)上bs更簡(jiǎn)便5開(kāi)發(fā)成本bs更簡(jiǎn)單cs需要客戶端安卓和ios軟件開(kāi)發(fā)模型瀑布模型1需求分析2功能設(shè)計(jì)3編寫(xiě)代碼4功能實(shí)現(xiàn)切入點(diǎn)5軟件測(cè)試需求變更6完成7上線維護(hù)是一種線性模型的一種,是其他開(kāi)發(fā)模型的基礎(chǔ)測(cè)試的切入點(diǎn)要留下足夠的時(shí)間可能導(dǎo)致測(cè)試不充分,上線后才暴露***開(kāi)發(fā)的各個(gè)階段比較清晰需求調(diào)查適合需求穩(wěn)定的產(chǎn)品開(kāi)發(fā)當(dāng)前一階段完成后,您只需要去關(guān)注后續(xù)階段可在迭代模型中應(yīng)用瀑布模型可以節(jié)省大量的時(shí)間和金錢缺點(diǎn)1)各個(gè)階段的劃分完全固定,階段之間產(chǎn)生大量的文檔,極大地增加了工作量。2)由于開(kāi)發(fā)模型是線性的,用戶只有等到整個(gè)過(guò)程的末期才能見(jiàn)到開(kāi)發(fā)成果,從而增加了開(kāi)發(fā)風(fēng)險(xiǎn)。3)通過(guò)過(guò)多的強(qiáng)制完成日期和里程碑來(lái)**各個(gè)項(xiàng)目階段。4)瀑布模型的突出缺點(diǎn)是不適應(yīng)用戶需求的變化瀑布模型強(qiáng)調(diào)文檔的作用,并要求每個(gè)階段都要仔細(xì)驗(yàn)證。軟件測(cè)評(píng)和第三方驗(yàn)收2025 年 IT 趨勢(shì)展望:深圳艾策的五大技術(shù)突破。
optimizer)采用的是adagrad,batch_size是40。深度神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練基本都是基于梯度下降的,尋找函數(shù)值下降速度**快的方向,沿著下降方向迭代,迅速到達(dá)局部**優(yōu)解的過(guò)程就是梯度下降的過(guò)程。使用訓(xùn)練集中的全部樣本訓(xùn)練一次就是一個(gè)epoch,整個(gè)訓(xùn)練集被使用的總次數(shù)就是epoch的值。epoch值的變化會(huì)影響深度神經(jīng)網(wǎng)絡(luò)的權(quán)重值的更新次數(shù)。本次實(shí)驗(yàn)使用了80%的樣本訓(xùn)練,20%的樣本驗(yàn)證,訓(xùn)練50個(gè)迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,前端融合模型的準(zhǔn)確率變化曲線如圖5所示,模型的對(duì)數(shù)損失變化曲線如圖6所示。從圖5和圖6可以看出,當(dāng)epoch值從0增加到5過(guò)程中,模型的驗(yàn)證準(zhǔn)確率和驗(yàn)證對(duì)數(shù)損失有一定程度的波動(dòng);當(dāng)epoch值從5到50的過(guò)程中,前端融合模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率基本不變,訓(xùn)練和驗(yàn)證對(duì)數(shù)損失基本不變;綜合分析圖5和圖6的準(zhǔn)確率和對(duì)數(shù)損失變化曲線,選取epoch的較優(yōu)值為30。確定模型的訓(xùn)練迭代數(shù)為30后,進(jìn)行了10折交叉驗(yàn)證實(shí)驗(yàn)。前端融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對(duì)數(shù)損失是,混淆矩陣如圖7所示,規(guī)范化后的混淆矩陣如圖8所示。前端融合模型的roc曲線如圖9所示,該曲線反映的是隨著檢測(cè)閾值變化下檢測(cè)率與誤報(bào)率之間的關(guān)系曲線。
為了有效保證這一階段測(cè)試的客觀性,必須由**的測(cè)試小組來(lái)進(jìn)行相關(guān)的系統(tǒng)測(cè)試。另外,系統(tǒng)測(cè)試過(guò)程較為復(fù)雜,由于在系統(tǒng)測(cè)試階段不斷變更需求造成功能的刪除或增加,從而使程序不斷出現(xiàn)相應(yīng)的更改,而程序在更改后可能會(huì)出現(xiàn)新的問(wèn)題,或者原本沒(méi)有問(wèn)題的功能由于更改導(dǎo)致出現(xiàn)問(wèn)題。所以,測(cè)試人員必須進(jìn)行回歸測(cè)試。[2]軟件測(cè)試方法驗(yàn)收測(cè)試驗(yàn)收測(cè)試是**后一個(gè)階段的測(cè)試操作,在軟件產(chǎn)品投入正式運(yùn)行前的所要進(jìn)行的測(cè)試工作。和系統(tǒng)測(cè)試相比而言,驗(yàn)收測(cè)試與之的區(qū)別就只是測(cè)試人員不同,驗(yàn)收測(cè)試則是由用戶來(lái)執(zhí)行這一操作的。驗(yàn)收測(cè)試的主要目標(biāo)是為向用戶展示所開(kāi)發(fā)出來(lái)的軟件符合預(yù)定的要求和有關(guān)標(biāo)準(zhǔn),并驗(yàn)證軟件實(shí)際工作的有效性和可靠性,確保用戶能用該軟件順利完成既定的任務(wù)和功能。通過(guò)了驗(yàn)收測(cè)試,該產(chǎn)品就可進(jìn)行發(fā)布。但是,在實(shí)際交付給用戶之后,開(kāi)發(fā)人員是無(wú)法預(yù)測(cè)該軟件用戶在實(shí)際運(yùn)用過(guò)程中是如何使用該程序的,所以從用戶的角度出發(fā),測(cè)試人員還應(yīng)進(jìn)行Alpha測(cè)試或Beta測(cè)試這兩種情形的測(cè)試。Alpha測(cè)試是在軟件開(kāi)發(fā)環(huán)境下由用戶進(jìn)行的測(cè)試,或者模擬實(shí)際操作環(huán)境進(jìn)而進(jìn)行的測(cè)試。如何選擇適合企業(yè)的 IT 解決方案?
圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構(gòu)圖。圖5是前端融合模型的準(zhǔn)確率變化曲線圖。圖6是前端融合模型的對(duì)數(shù)損失變化曲線圖。圖7是前端融合模型的檢測(cè)混淆矩陣示意圖。圖8是規(guī)范化前端融合模型的檢測(cè)混淆矩陣示意圖。圖9是前端融合模型的roc曲線圖。圖10是后端融合模型的架構(gòu)圖。圖11是后端融合模型的準(zhǔn)確率變化曲線圖。圖12是后端融合模型的對(duì)數(shù)損失變化曲線圖。圖13是后端融合模型的檢測(cè)混淆矩陣示意圖。圖14是規(guī)范化后端融合模型的檢測(cè)混淆矩陣示意圖。圖15是后端融合模型的roc曲線圖。圖16是中間融合模型的架構(gòu)圖。圖17是中間融合模型的準(zhǔn)確率變化曲線圖。圖18是中間融合模型的對(duì)數(shù)損失變化曲線圖。圖19是中間融合模型的檢測(cè)混淆矩陣示意圖。圖20是規(guī)范化中間融合模型的檢測(cè)混淆矩陣示意圖。圖21是中間融合模型的roc曲線圖。具體實(shí)施方式下面將結(jié)合本發(fā)明實(shí)施例中的附圖,對(duì)本發(fā)明實(shí)施例中的技術(shù)方案進(jìn)行清楚、完整地描述,顯然,所描述的實(shí)施例**是本發(fā)明一部分實(shí)施例,而不是全部的實(shí)施例。基于本發(fā)明中的實(shí)施例,本領(lǐng)域普通技術(shù)人員在沒(méi)有做出創(chuàng)造性勞動(dòng)前提下所獲得的所有其他實(shí)施例,都屬于本發(fā)明保護(hù)的范圍。滲透測(cè)試報(bào)告暴露2個(gè)高危API接口需緊急加固。軟件測(cè)試 中心
多平臺(tái)兼容性測(cè)試顯示Linux環(huán)境下存在驅(qū)動(dòng)適配問(wèn)題。軟件驗(yàn)收壓力測(cè)試
保留了較多信息,同時(shí)由于操作數(shù)比較隨機(jī),某種程度上又沒(méi)有抓住主要矛盾,干擾了主要語(yǔ)義信息的提取。pe文件即可移植文件導(dǎo)入節(jié)中的動(dòng)態(tài)鏈接庫(kù)(dll)和應(yīng)用程序接口(api)信息能大致反映軟件的功能和性質(zhì),通過(guò)一個(gè)可執(zhí)行程序引用的dll和api信息可以粗略的預(yù)測(cè)該程序的功能和行為。belaoued和mazouzi應(yīng)用統(tǒng)計(jì)khi2檢驗(yàn)分析了pe格式的惡意軟件和良性軟件的導(dǎo)入節(jié)中的dll和api信息,分析顯示惡意軟件和良性軟件使用的dll和api信息統(tǒng)計(jì)上有明顯的區(qū)別。后續(xù)的研究人員提出了挖掘dll和api信息的惡意軟件檢測(cè)方法,該類方法提取的特征語(yǔ)義信息豐富,但*從二進(jìn)制可執(zhí)行文件的導(dǎo)入節(jié)提取特征,忽略了整個(gè)可執(zhí)行文件的大量信息。惡意軟件和被***二進(jìn)制可執(zhí)行文件格式信息上存在一些異常,這些異常是檢測(cè)惡意軟件的關(guān)鍵。研究人員提出了基于二進(jìn)制可執(zhí)行文件格式結(jié)構(gòu)信息的惡意軟件檢測(cè)方法,這類方法從二進(jìn)制可執(zhí)行文件的pe文件頭、節(jié)頭部、資源節(jié)等提取特征,基于這些特征使用機(jī)器學(xué)習(xí)分類算法處理,取得了較高的檢測(cè)準(zhǔn)確率。這類方法通常不受變形或多態(tài)等混淆技術(shù)影響,提取特征只需要對(duì)pe文件進(jìn)行格式解析,無(wú)需遍歷整個(gè)可執(zhí)行文件,提取特征速度較快。軟件驗(yàn)收壓力測(cè)試