降低成本對每個階段都進行測試,包括文檔,便于控制項目過程缺點依賴文檔,沒有文檔的項目無法使用,復雜度很高,實踐需要很強的管理H模型把測試活動完全**出來,將測試準備和測試執(zhí)行體現出來測試準備-測試執(zhí)行就緒點其他流程----------設計等v模型適用于中小企業(yè)需求在開始必須明確,不適用變更需求w模型適用于中大企業(yè)包括文檔也需要測試(需求分析文檔概要設計文檔詳細設計文檔代碼文檔)測試和開發(fā)同步進行H模型對公司參與人員技能和溝通要求高測試階段單元測試-集成測試-系統(tǒng)測試-驗證測試是否覆蓋代碼白盒測試-黑盒測試-灰盒測試是否運行靜態(tài)測試-動態(tài)測試測試手段人工測試-自動化測試其他測試回歸測試-冒*測試功能測試一般功能測試-界面測試-易用性測試-安裝測試-兼容性測試性能測試穩(wěn)定性測試-負載測試-壓力測試-時間性能-空間性能負載測試確定在各種工作負載下,系統(tǒng)各項指標變化情況壓力測試:通過確定一個系統(tǒng)的剛好不能接受的性能點。獲得系統(tǒng)能夠提供的**大服務級別測試用例為特定的目的而設計的一組測試輸入,執(zhí)行條件和預期結果,以便測試是否滿足某個特定需求。通過大量的測試用例來檢測軟件的運行效果,它是指導測試工作進行的依據。深圳艾策信息科技:可持續(xù)發(fā)展的 IT 解決方案。成都第三方軟件評測實驗室
12)把節(jié)裝入到vmm的地址空間,(13)可選頭部的sizeofcode域取值不正確,(14)含有可疑標志;所述存在明顯的統(tǒng)計差異的格式結構特征包括:(1)無證書表;(2)調試數據明顯小于正常文件,(3).text、.rsrc、.reloc和.rdata的characteristics屬性異常,(4)資源節(jié)的資源個數少于正常文件。進一步的,所述生成軟件樣本的字節(jié)碼n-grams特征視圖的具體實現過程如下:先從當前軟件樣本的所有短序列特征中選取詞頻tf**高的多個短序列特征;然后計算選取的每個短序列特征的逆向文件頻率idf與詞頻tf的乘積,并將其作為選取的每個短序列特征的特征值,,表示該短序列特征表示其所在軟件樣本的能力越強;**后在選取的詞頻tf**高的多個短序列特征中選取,生成字節(jié)碼n-grams特征視圖;:=tf×idf;其中,ni,j是短序列特征i在軟件樣本j中出現的次數,∑knk,j指軟件樣本j中所有短序列特征出現的次數之和,k為短序列特征總數,1≤i≤k;其中,|d|指軟件樣本j的總數,|{j:i∈j}|指包含短序列特征i的軟件樣本j的數目。進一步的,所述步驟s2采用中間融合方法訓練多模態(tài)深度集成模型。軟件檢測報告評測機構數據驅動決策:艾策科技如何提升企業(yè)競爭力。
此外格式結構信息具有明顯的語義信息,但基于格式結構信息的檢測方法沒有提取決定軟件行為的代碼節(jié)和數據節(jié)信息作為特征。某一種類型的特征都從不同的視角反映刻畫了可執(zhí)行文件的一些性質,字節(jié)碼n-grams、dll和api信息、格式結構信息都部分捕捉到了惡意軟件和良性軟件間的可區(qū)分信息,但都存在著一定的局限性,不能充分、綜合、整體的表示可執(zhí)行文件的本質,使得檢測結果準確率不高、可靠性低、泛化性和魯棒性不佳。此外,惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測。技術實現要素:本發(fā)明實施例的目的在于提供一種基于多模態(tài)深度學習的惡意軟件檢測方法,以解決現有采用二進制可執(zhí)行文件的單一特征類型進行惡意軟件檢測的檢測方法檢測準確率不高、檢測可靠性低、泛化性和魯棒性不佳的問題,以及其難以檢測出偽造良性軟件特征的惡意軟件的問題。本發(fā)明實施例所采用的技術方案是,基于多模態(tài)深度學習的惡意軟件檢測方法,按照以下步驟進行:步驟s1、提取軟件樣本的二進制可執(zhí)行文件的dll和api信息、pe格式結構信息以及字節(jié)碼n-grams的特征表示,生成軟件樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖。
將訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入深度神經網絡,訓練多模態(tài)深度集成模型;(1)方案一:采用前端融合(early-fusion)方法,首先合并訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的特征,融合成一個單一的特征向量空間,然后將其作為深度神經網絡模型的輸入,訓練多模態(tài)深度集成模型;(2)方案二:首先利用訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖分別訓練深度神經網絡模型,合并訓練的三個深度神經網絡模型的決策輸出,并將其作為感知機的輸入,訓練得到**終的多模態(tài)深度集成模型;(3)方案三:采用中間融合(intermediate-fusion)方法,首先使用三個深度神經網絡分別學習訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的高等特征表示,并合并學習得到的訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的高等特征表示融合成一個單一的特征向量空間,然后將其作為下一個深度神經網絡的輸入,訓練得到多模態(tài)深度神經網絡模型。步驟s3、將軟件樣本中的類別未知的軟件樣本作為測試樣本。如何選擇適合企業(yè)的 IT 解決方案?
所述生成軟件樣本的dll和api信息特征視圖,是先統(tǒng)計所有類別已知的軟件樣本的pe可執(zhí)行文件引用的dll和api信息,從中選取引用頻率**高的多個dll和api信息;然后判斷當前的軟件樣本的導入節(jié)里是否存在選擇出的某個引用頻率**高的dll和api信息,如存在,則將當前軟件樣本的該dll或api信息以1表示,否則將其以0表示,從而對當前軟件樣本的所有dll和api信息進行表示形成當前軟件樣本的dll和api信息特征視圖。進一步的,所述生成軟件樣本的格式信息特征視圖,是從當前軟件樣本的pe格式結構信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結構特征,形成當前軟件樣本的格式信息特征視圖。進一步的,所述從當前軟件樣本的pe格式結構信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結構特征,是從當前軟件樣本的pe格式結構信息中確定存在特定格式異常的pe格式結構特征以及存在明顯的統(tǒng)計差異的格式結構特征;所述特定格式異常包括:(1)代碼從**后一節(jié)開始執(zhí)行,(2)節(jié)頭部可疑的屬性,(3)pe可選頭部有效尺寸的值不正確,(4)節(jié)之間的“間縫”,(5)可疑的代碼重定向,(6)可疑的代碼節(jié)名稱,(7)可疑的頭部***,(8)來自,(9)導入地址表被修改,(10)多個pe頭部,(11)可疑的重定位信息,。艾策檢測為新能源汽車電池提供安全性能深度解析。成都軟件測試公司
隱私合規(guī)檢測確認用戶數據加密符合GDPR標準要求。成都第三方軟件評測實驗室
2)軟件產品登記測試流程材料準備并遞交------實驗室受理------環(huán)境準備------測試實施------輸出報告------通知客戶------繳費并取報告服務區(qū)域北京、上海、廣州、深圳、重慶、杭州、南京、蘇州等**各地軟件測試報告|軟件檢測報告以“軟件質量為目標,貫穿整個軟件生命周期、覆蓋軟件測試生命周期”的**測試服務模式,真正做到了“軟件測試應該越早介入越好的原則”,從軟件生命周期的每一個環(huán)節(jié)把控軟件產品質量;提供軟件產品質量度量依據,提供軟件可靠性分析依據。軟件成果鑒定測試結果可以作為軟件類科技成果鑒定的依據。提供功能、性能、標準符合性、易用性、安全性、可靠性等專項測試服務??萍柬椖框炇諟y試報告及鑒定結論,可以真實反映指標的技術水平和市場價值,有助于項目成交和產品營銷。成都第三方軟件評測實驗室