個(gè)性化需求,專屬服務(wù):海綿定制如何滿足多樣化市場(chǎng)-海綿定制
如何選擇合適的過(guò)濾綿:提升過(guò)濾效率與延長(zhǎng)使用壽命-過(guò)濾綿
揭秘物流網(wǎng)格海綿:如何在運(yùn)輸中提供良好緩沖效果-網(wǎng)格海綿
寵物海綿爬梯:為寵物量身定制的沙發(fā)與床間通行神器-海綿爬梯
寵物友好家居設(shè)計(jì):海綿爬梯讓沙發(fā)、樓梯、床觸手可及-海綿爬梯
如何挑選高效耐用的杯刷海綿:一份實(shí)用的購(gòu)買指南-杯刷海綿
淘氣堡海綿材質(zhì)對(duì)比,哪種更適合你家孩子-淘氣堡海綿
海綿鞋擦:輕松去除鞋面污漬-海綿鞋擦
高效去除洗衣機(jī)內(nèi)毛發(fā):洗衣球海綿的神奇功效-洗衣球海綿
寵物海綿爬梯:安全、舒適且有趣-小型寵物海綿爬梯輔助器報(bào)價(jià)
氧化石墨烯同時(shí)具有熒光發(fā)射和熒光淬滅特性,廣義而言,其自身已經(jīng)可以作為一種傳感材料,在生物、醫(yī)學(xué)領(lǐng)域的應(yīng)用充分說(shuō)明了這一點(diǎn)。經(jīng)過(guò)功能化的氧化石墨烯/還原氧化石墨烯在更加***的領(lǐng)域內(nèi)得到了應(yīng)用,特別在光探測(cè)、光學(xué)成像、新型光源、非線性器件等光電傳感相關(guān)領(lǐng)域有著豐富的應(yīng)用。光電探測(cè)器是石墨烯問(wèn)世后**早應(yīng)用的領(lǐng)域之一。2009年,Xia等利用機(jī)械剝離的石墨烯制備出了***個(gè)石墨烯光電探測(cè)器(MGPD)[2],如圖9.6,以1-3層石墨烯作為有源層,Ti/Pd/Au作源漏電極,Si作為背柵極并在其上沉淀300nm厚的SiO2,在電極和石墨烯的接觸面上因?yàn)楣瘮?shù)的不同,能帶會(huì)發(fā)生彎曲并產(chǎn)生內(nèi)建電場(chǎng)。GO制備簡(jiǎn)單、自身具有受還原程度調(diào)控的帶隙,可以實(shí)現(xiàn)超寬譜(從可見(jiàn)至太赫茲波段)探測(cè)。氧化石墨吸附
RGO制備簡(jiǎn)單、自身具有受還原程度調(diào)控的帶隙,可以實(shí)現(xiàn)超寬譜(從可見(jiàn)至太赫茲波段)探測(cè)。氧化石墨烯的還原程度對(duì)探測(cè)性能有***影響,隨著氧化石墨烯還原程度的提高,探測(cè)器的響應(yīng)率可以提高若干倍以上。因此,在CVD石墨烯方案的基礎(chǔ)上,研究者開(kāi)始嘗試使用還原氧化石墨烯制備類似結(jié)構(gòu)的光電探測(cè)器。對(duì)于RGO-Si器件,帶間光子躍遷以及界面處的表面電荷積累,是影響光響應(yīng)的重要因素[72]。2014年,Cao等[73]將氧化石墨烯分散液滴涂在硅線陣列上,而后通過(guò)熱處理對(duì)氧化石墨烯進(jìn)行熱還原,制得了硅納米線陣列(SiNW)-RGO異質(zhì)結(jié)的室溫超寬譜光探測(cè)器。該探測(cè)器在室溫下,***實(shí)現(xiàn)了從可見(jiàn)光(532nm)到太赫茲波(2.52THz,118.8mm)的超寬譜光探測(cè)。在所有波段中,探測(cè)器對(duì)10.6mm的長(zhǎng)波紅外具有比較高的光響應(yīng)率可達(dá)9mA/W。深圳官能化氧化石墨氧化石墨可以用于提高環(huán)氧樹(shù)脂、聚乙烯、聚酰胺等聚合物的導(dǎo)熱性能。
GO在生理學(xué)環(huán)境下容易發(fā)生聚**影響其負(fù)載藥物的能力,因此需要對(duì)GO進(jìn)行功能化修飾來(lái)解決其容易團(tuán)聚的問(wèn)題。目前功能化修飾主要有以下幾種:(1)共價(jià)鍵修飾,由于GO表面豐富的含氧官能團(tuán)(羥基、羧基、環(huán)氧基),可與多種親水性大分子通過(guò)酯鍵、酰胺鍵等共價(jià)鍵連接完成功能化,改善其穩(wěn)定性、生物相容性等。常見(jiàn)的大分子有聚乙二醇(PEG)、聚賴氨酸、聚丙烯(PAA)和聚醚酰亞胺(PEI)等;(2)非共價(jià)鍵修飾[22-24],GO片層內(nèi)碳原子共同形成一個(gè)大的π鍵,能夠通過(guò)非共價(jià)π-π作用與芳香類化合物相互結(jié)合,不同種類的生物分子也可以通過(guò)氫鍵作用、范德華力和疏水作用等非共價(jià)作用力與GO結(jié)構(gòu)中的SP2雜化部分結(jié)合完成功能化修飾。
太赫茲技術(shù)可用于醫(yī)學(xué)診斷與成像、反恐安全檢查、通信雷達(dá)、射電天文等領(lǐng)域,將對(duì)技術(shù)創(chuàng)新、國(guó)民經(jīng)濟(jì)發(fā)展以及**等領(lǐng)域產(chǎn)生深遠(yuǎn)的影響。作為極具發(fā)展?jié)摿Φ男录夹g(shù),2004年,美國(guó)**將THz科技評(píng)為“改變未來(lái)世界的**技術(shù)”之一,而日本于2005年1月8日更是將THz技術(shù)列為“國(guó)家支柱**重點(diǎn)戰(zhàn)略目標(biāo)”**,舉全國(guó)之力進(jìn)行研發(fā)。傳統(tǒng)的寬帶THz波可以通過(guò)光整流、光電導(dǎo)天線、激光氣體等離子體等方法產(chǎn)生,窄帶THz波可以通過(guò)太赫茲激光器、光學(xué)混頻、加速電子、光參量轉(zhuǎn)換等方法產(chǎn)生。氧化石墨烯(GO)的比表面積很大,厚度小。
在GO還原成RGO的過(guò)程中,材料的導(dǎo)電性、禁帶特性和折射率都會(huì)發(fā)生連續(xù)變化,形成獨(dú)特而優(yōu)異的可調(diào)諧型新材料。2014年,澳大利亞微光子學(xué)中心賈寶華教授領(lǐng)導(dǎo)的科研小組***發(fā)現(xiàn)在用激光直寫(xiě)氧化石墨烯薄膜形成微納米結(jié)構(gòu)的過(guò)程中,材料的非線性可以實(shí)現(xiàn)激光功率可控的動(dòng)態(tài)調(diào)諧。與傳統(tǒng)的非線性材料相比,氧化石墨烯的三階非線性高出了整整1000倍,隨著氧化石墨烯中的氧成分逐漸減少,而非線性也呈現(xiàn)出被動(dòng)態(tài)調(diào)諧的豐富變化。不但材料的非線性系數(shù)的大小產(chǎn)生改變,其非線性吸收和折射率也發(fā)生變化,并且,這種豐富的非線性特性完全可以實(shí)現(xiàn)動(dòng)態(tài)操控。氧化石墨烯(GO)是印刷電子、催化、儲(chǔ)能、分離膜、生物醫(yī)學(xué)和復(fù)合材料的理想材料。氧化石墨吸附
靜電作用的強(qiáng)弱與氧化石墨烯表面官能團(tuán)產(chǎn)生的負(fù)電荷相關(guān)。氧化石墨吸附
GO膜在水處理中的分離機(jī)理尚存在諸多爭(zhēng)議。一種觀點(diǎn)認(rèn)為通過(guò)尺寸篩分以及帶電的目標(biāo)分離物與納米孔之間的靜電排斥機(jī)理實(shí)現(xiàn)分離,如圖8.3所示。氧化石墨烯膜的分離通道主要由兩部分構(gòu)成:1)氧化石墨烯分離膜中不規(guī)則褶皺結(jié)構(gòu)形成的半圓柱孔道;2)氧化石墨烯分離膜片層之間的空隙。除此之外,由氧化石墨烯結(jié)構(gòu)缺陷引起的納米孔道對(duì)于水分子的傳輸提供了額外的通道19-22。Mi等23研究認(rèn)為干態(tài)下通過(guò)真空過(guò)濾制備的氧化石墨烯片層間隙的距離約為0.3nm。氧化石墨吸附