任何設備在故障發(fā)生之前都會出現(xiàn)一些異常現(xiàn)象或癥狀,如振動偏大,有異常噪音等。持續(xù)狀態(tài)監(jiān)測在預測性維護實踐中起著重要作用,而關鍵的監(jiān)測參數(shù)是振動。設備振動揭示了對多個組件問題的重要見解,這些問題可能會降低流程質量并**終導致生產(chǎn)停工。通過油溫升高可能是由于軸承運行狀態(tài)異常,也可能是由于室溫高、散熱慢、潤滑油枯度偏高或運行時間較長等原因。因此,在判斷時可能出現(xiàn)兩類決策錯誤;一是把實際處于異常狀態(tài)的機器誤認為正常狀態(tài),二是把實際處于正常狀態(tài)的機器錯認為異常狀態(tài)。如果同時用幾個特征,如油溫.潤滑油分析和噪聲來監(jiān)視機器主軸承的運行狀態(tài),判斷就較為可靠。
遠程終端廣泛應用于工業(yè)互聯(lián)網(wǎng)、分布式數(shù)據(jù)采集、設備狀態(tài)的在線監(jiān)測,能夠進行前端數(shù)據(jù)清洗和邊緣計算,通過對歷史數(shù)據(jù)趨勢分析、設備數(shù)據(jù)機理分析、統(tǒng)計分析等大數(shù)據(jù)分析,對設備的狀態(tài)做出有效可靠的健康狀態(tài)評判,從而切實有效的提高設備的維護能力。遠程終端可實現(xiàn)對電源電壓、設備狀態(tài)的自檢,分析計量故障等信息,及時發(fā)現(xiàn)計量異?!,F(xiàn)場監(jiān)測箱開門、斷電、設備運行等異常信息也能夠主動發(fā)送報警信息到監(jiān)測中心,實現(xiàn)設備在線監(jiān)診的準確性、完整性、及時性和可靠性。 電機的運行狀態(tài)涉及多個參數(shù),包括振動、溫度、電流、電壓等。同時監(jiān)測和分析這些多參數(shù)復雜性是一個挑戰(zhàn)。嘉興NVH監(jiān)測技術
設備狀態(tài)監(jiān)測和故障診斷技術是設備維護手段之一。設備的故障監(jiān)測診斷技術,就是利用科學的檢測方法和現(xiàn)代化技術手段,對設備目前的運行狀態(tài)進行監(jiān)測和排查,從而判斷出設備運行狀態(tài)的可靠性,確認其局部或整機是否正常運行。煤礦用機電設備溫度振動監(jiān)測系統(tǒng)用于煤礦主扇、壓風機、鋼絲繩牽引帶式輸送機、滾筒帶式輸送機、排水泵和電動機、提升機等,有助于掌握設備運行工況中的溫度振動數(shù)據(jù)。提升機、鋼絲繩牽引、滾筒帶式輸送機、皮帶機、空壓機、壓風機、水泵等煤礦機電設備要求增加電動機及主要軸承溫度和振動監(jiān)測。裝置功能:1、提升機、水泵、皮帶機等設備電動機主軸承溫度振動在線監(jiān)測2、礦用高壓異步電動機軸承溫度振動檢測診斷3、提升機、水泵、皮帶機等設備滾筒主軸承溫度振動在線監(jiān)測4、井下大型機電設備電動機及主要軸承溫度振動在線監(jiān)測5、可以同時收集電機前后軸承溫度及電機振動量的數(shù)值,對收到的信息分析處理6、系統(tǒng)提供網(wǎng)絡接口,可直接與智能礦山網(wǎng)絡相連,也可與其它網(wǎng)絡內的系統(tǒng)連接;7、在線系統(tǒng)軟件可實時監(jiān)測任意通道頻譜,時域波形、趨勢、三維譜圖和坐標圖,還可通過互聯(lián)網(wǎng)進行遠程監(jiān)測。穩(wěn)定監(jiān)測方案電機狀態(tài)監(jiān)測是用于實時監(jiān)測和評估電機運行狀況的技術。這種監(jiān)測有助于及早發(fā)現(xiàn)潛在問題,預測電機故障。
隨著電力電子技術、自動化控制技術的不斷發(fā)展,電機在工業(yè)生產(chǎn)以及家用電器中得到了應用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數(shù)的方式進行數(shù)據(jù)的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測試結果不準確。有些場合需要進行電機多種參數(shù)的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準確、實時掌握電機的運行狀態(tài)和故障。技術實現(xiàn)要素:本發(fā)明提出了一種電機在線監(jiān)測裝置和方法,通過對扭矩、轉速、各相電流、電壓、溫度、功率和效率進行實時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進行報警停機,解決現(xiàn)有技術中監(jiān)測參數(shù)不能定量分析以及無法更加準確、實時的掌握電機運行狀態(tài)和故障的技術問題。
基于人工神經(jīng)網(wǎng)絡的診斷方法簡單處理單元連接而成的復雜的非線性系統(tǒng),具有學習能力,自適應能力,非線性逼近能力等。故障診斷的任務從映射角度看就是從征兆到故障類型的映射。用ANN技術處理故障診斷問題,不僅能進行復雜故障診斷模式的識別,還能進行故障嚴重性評估和故障預測,由于ANN能自動獲取診斷知識,使診斷系統(tǒng)具有自適應能力。基于集成型智能系統(tǒng)的診斷方法隨著電機設備系統(tǒng)越來越復雜,依靠單一的故障診斷技術已難滿足復雜電機設備的故障診斷要求,因此上述各種診斷技術集成起來形成的集成智能診斷系統(tǒng)成為當前電機設備故障診斷研究的熱點。主要的集成技術有:基于規(guī)則的系統(tǒng)與ANN結合,模糊邏輯與ANN的結合,混沌理論與ANN的結合,模糊神經(jīng)網(wǎng)絡與系統(tǒng)的結合。在實際工業(yè)環(huán)境中,存在許多環(huán)境噪聲,可能干擾電機監(jiān)測系統(tǒng)的信號。需要采用高度靈敏的傳感器和濾波技術。
電力系統(tǒng)中發(fā)電機單機容量越大型發(fā)電機在電力生產(chǎn)中處于主力位置,同時大型發(fā)電機由于造價昂貴,結構復雜,一旦遭受損壞,需要的檢修期長,因此要求有極高的運行可靠性。就我國目前和今后很長一段時間內的缺電、用電緊張的狀況而言,發(fā)電機的年運行小時數(shù)目和滿負荷率都較以往高出很多,備用容量很少的情況下,其運行可靠性顯得尤為重要和突出。因此對大型機組進行在線監(jiān)測與診斷,做到早期預警以防止事故的發(fā)生或擴大具有重要的現(xiàn)實意義。通常對發(fā)電機的“監(jiān)測”與“診斷”在內容上并無明確的劃分界限,可以說監(jiān)測的數(shù)據(jù)和結果即為診斷的依據(jù)。監(jiān)測利用各種傳感器在電機運行時對電機的狀態(tài)提取相關數(shù)據(jù)。故障診斷使用計算機及其相應智能軟件,根據(jù)傳感器提供的信息,對故障進行分類定位,確定故障的嚴重程度并提出處理意見。因此狀態(tài)監(jiān)測和故障診斷是一項工作的兩個部分,前者是后者的基礎,后者是前者的分析與綜合。電機狀態(tài)監(jiān)測技術可幫助運行維護人員擺脫被動檢修和不太理想的定期檢修的困境,按照設備內部實際的運行狀況,合理的安排檢修工作,實現(xiàn)所謂“預知”維修。既可避免由于設備突然損壞,停止運行帶來的損失,又可充分發(fā)揮設備的作用。設備監(jiān)測可以滿足對部件疲勞程度診斷、機械摩擦磨損、機械沖擊、部件過熱等健康狀況問題的實時預警。無錫功能監(jiān)測系統(tǒng)供應商
用攝像頭和圖像處理技術來監(jiān)測切削過程中刀具的形狀和外觀。磨損、缺口或其他異常可能通過圖像分析來檢測。嘉興NVH監(jiān)測技術
電機狀態(tài)監(jiān)測和故障診斷技術是一種了解掌握電機在使用過程中狀態(tài),確定其整體或局部正?;虍惓?,早期發(fā)現(xiàn)故障及其原因,并能預報故障發(fā)展趨勢的技術,電機狀態(tài)監(jiān)測與故障診斷技術包括識別電機狀態(tài)監(jiān)測和預測發(fā)展趨勢兩方面。設備狀態(tài)是指設備運行的工況,由設備運行過程中的各種性能參數(shù)以及設備運行過程中產(chǎn)生的二次效應參數(shù)和產(chǎn)品質量指標參數(shù)來描述。設備狀態(tài)的類型包括:正常、異常和故障三種。設備狀態(tài)監(jiān)測是通過測定以上參數(shù),并進行分析處理,根據(jù)分析處理結果判定設備狀態(tài)。對設備進行定期或連續(xù)監(jiān)測,包括采用各種測試、分析判別方法,結合設備的歷史狀況和運行條件,弄清設備的客觀狀態(tài),獲取設備性能發(fā)展的趨勢規(guī)律,為設備的性能評價、合理使用、安全運行、故障診斷及設備自動控制打下堅實基礎。嘉興NVH監(jiān)測技術