原子力顯微鏡(AFM)不僅能夠高精度測(cè)量金屬材料表面的粗糙度,還可用于檢測(cè)材料的納米力學(xué)性能。通過將極細(xì)的探針與金屬材料表面輕輕接觸,利用探針與表面原子間的微弱相互作用力,獲取表面的微觀形貌信息,從而精確計(jì)算表面粗糙度參數(shù)。同時(shí),通過控制探針的加載力和位移,測(cè)量材料在納米尺度下的彈性模量、硬度等力學(xué)性能。在微納制造領(lǐng)域,金屬材料表面的粗糙度和納米力學(xué)性能對(duì)微納器件的性能和可靠性有著關(guān)鍵影響。例如在硬盤讀寫頭的制造中,通過 AFM 檢測(cè)金屬材料表面的粗糙度,確保讀寫頭與硬盤盤面的良好接觸,提高數(shù)據(jù)存儲(chǔ)和讀取的準(zhǔn)確性。AFM 的納米力學(xué)性能檢測(cè)為微納器件的材料選擇和設(shè)計(jì)提供了微觀層面的依據(jù)。沖擊試驗(yàn)檢測(cè)金屬材料韌性,在沖擊載荷下看其抗斷裂能力,關(guān)乎使用安全。F304上屈服強(qiáng)度試驗(yàn)
動(dòng)態(tài)力學(xué)分析(DMA)在金屬材料疲勞研究中發(fā)揮著重要作用。它通過對(duì)金屬樣品施加周期性的動(dòng)態(tài)載荷,同時(shí)測(cè)量樣品的應(yīng)力、應(yīng)變響應(yīng)以及阻尼特性。在模擬實(shí)際服役條件下的疲勞加載過程中,DMA 能夠?qū)崟r(shí)監(jiān)測(cè)材料內(nèi)部微觀結(jié)構(gòu)的變化,如位錯(cuò)運(yùn)動(dòng)、晶界滑移等,這些微觀變化與材料宏觀的疲勞性能密切相關(guān)。例如在汽車零部件的研發(fā)中,對(duì)于承受交變載荷的金屬部件,如曲軸、連桿等,利用 DMA 分析其在不同頻率、振幅和溫度下的疲勞行為,能夠準(zhǔn)確預(yù)測(cè)材料的疲勞壽命,優(yōu)化材料成分和熱處理工藝,提高汽車零部件的抗疲勞性能,減少因疲勞失效導(dǎo)致的汽車故障,延長(zhǎng)汽車的使用壽命。ISO 6506-1-2014金屬材料的疲勞試驗(yàn),模擬循環(huán)加載,測(cè)定疲勞壽命,延長(zhǎng)設(shè)備使用壽命。
掃描開爾文探針力顯微鏡(SKPFM)可用于檢測(cè)金屬材料的表面電位分布,這對(duì)于研究材料的腐蝕傾向、表面電荷分布以及涂層完整性等具有重要意義。通過將一個(gè)微小的探針在金屬材料表面上方掃描,利用探針與表面之間的靜電相互作用,測(cè)量表面電位的變化。在金屬材料的腐蝕防護(hù)研究中,SKPFM 能夠檢測(cè)出表面不同區(qū)域的電位差異,從而判斷材料表面是否存在腐蝕活性點(diǎn),評(píng)估涂層對(duì)金屬基體的防護(hù)效果。例如在海洋工程中,對(duì)于長(zhǎng)期浸泡在海水中的金屬結(jié)構(gòu),利用 SKPFM 監(jiān)測(cè)表面電位變化,可及時(shí)發(fā)現(xiàn)涂層破損或腐蝕隱患,采取相應(yīng)的防護(hù)措施,延長(zhǎng)金屬結(jié)構(gòu)的使用壽命。
電子背散射衍射(EBSD)分析是研究金屬材料晶體結(jié)構(gòu)與取向關(guān)系的有力工具。該技術(shù)利用電子束照射金屬樣品表面,電子與晶體相互作用產(chǎn)生背散射電子,這些電子帶有晶體結(jié)構(gòu)和取向的信息。通過專門的探測(cè)器收集背散射電子,并轉(zhuǎn)化為菊池花樣,再經(jīng)過分析軟件處理,就能精確確定晶體的取向、晶界類型以及晶粒尺寸等重要參數(shù)。在金屬加工行業(yè),EBSD 分析對(duì)優(yōu)化材料成型工藝意義重大。例如在鍛造過程中,了解金屬材料內(nèi)部晶體結(jié)構(gòu)的變化和取向分布,可合理調(diào)整鍛造工藝參數(shù),如鍛造溫度、變形量等,使材料內(nèi)部組織更加均勻,提高材料的綜合性能,避免因晶體取向不合理導(dǎo)致的材料性能各向異性,提升產(chǎn)品質(zhì)量與生產(chǎn)效率。金屬材料的熱膨脹系數(shù)試驗(yàn)運(yùn)用熱機(jī)械分析儀,精確測(cè)量材料在溫度變化過程中的尺寸變化,獲取熱膨脹系數(shù) 。
電子探針微區(qū)分析(EPMA)可對(duì)金屬材料進(jìn)行微區(qū)成分和結(jié)構(gòu)分析。它利用聚焦的高能電子束轟擊金屬樣品表面,激發(fā)樣品發(fā)出特征 X 射線、二次電子等信號(hào)。通過檢測(cè)特征 X 射線的波長(zhǎng)和強(qiáng)度,能精確分析微區(qū)內(nèi)元素的種類和含量,其空間分辨率可達(dá)微米級(jí)。同時(shí),結(jié)合二次電子成像,可觀察微區(qū)的微觀形貌和組織結(jié)構(gòu)。在金屬材料的失效分析中,EPMA 發(fā)揮著重要作用。例如,當(dāng)金屬零部件出現(xiàn)局部腐蝕或斷裂時(shí),通過 EPMA 對(duì)失效部位的微區(qū)進(jìn)行分析,可確定腐蝕產(chǎn)物的成分、微區(qū)的元素分布以及組織結(jié)構(gòu)變化,從而找出導(dǎo)致失效的根本原因,為改進(jìn)材料設(shè)計(jì)和加工工藝提供有力依據(jù),提高產(chǎn)品的質(zhì)量和可靠性。金屬材料的內(nèi)耗測(cè)試,測(cè)量材料在振動(dòng)過程中的能量損耗,助力對(duì)振動(dòng)敏感設(shè)備的選材。ISO 6506-1-2014
金屬材料的微尺度拉伸試驗(yàn),檢測(cè)微小樣品力學(xué)性能,滿足微機(jī)電系統(tǒng)(MEMS)等領(lǐng)域材料評(píng)估需求。F304上屈服強(qiáng)度試驗(yàn)
鹽霧環(huán)境對(duì)金屬材料的腐蝕性極強(qiáng),尤其是在沿海地區(qū)的工業(yè)設(shè)施、船舶以及海洋平臺(tái)等場(chǎng)景中。腐蝕電位檢測(cè)通過模擬海洋工況,將金屬材料置于鹽霧試驗(yàn)箱內(nèi),箱內(nèi)持續(xù)噴出含有一定濃度氯化鈉的鹽霧,高度模擬海洋大氣環(huán)境。在這種環(huán)境下,利用電化學(xué)測(cè)試設(shè)備測(cè)量金屬材料的腐蝕電位。腐蝕電位反映了金屬在該環(huán)境下發(fā)生腐蝕反應(yīng)的難易程度。電位越低,金屬越容易失去電子發(fā)生腐蝕。通過對(duì)不同金屬材料或同一材料經(jīng)過不同表面處理后的腐蝕電位檢測(cè),能直觀地評(píng)估其耐腐蝕性能。例如在船舶制造中,選擇腐蝕電位較高、耐腐蝕性能強(qiáng)的金屬材料用于船體結(jié)構(gòu),可有效延長(zhǎng)船舶在海洋環(huán)境中的服役壽命,減少因腐蝕導(dǎo)致的維修成本與安全隱患,保障船舶航行的安全性與穩(wěn)定性。F304上屈服強(qiáng)度試驗(yàn)