三坐標(biāo)測(cè)量機(jī)是加工現(xiàn)場(chǎng)常用的高精度產(chǎn)品尺寸及形位公差檢測(cè)設(shè)備,其具有通用性強(qiáng),精確可靠等優(yōu)點(diǎn)。本文面向一種特殊材料異型結(jié)構(gòu)零件內(nèi)曲面的表面粗糙度測(cè)量要求,提出一種基于高精度光譜共焦位移傳感技術(shù)的表面粗糙度集成在線測(cè)量方法,利用工業(yè)現(xiàn)場(chǎng)常用的三坐標(biāo)測(cè)量機(jī)平臺(tái)執(zhí)行輪廓掃描,并記錄測(cè)量掃描位置實(shí)時(shí)空間橫坐標(biāo),根據(jù)空間坐標(biāo)關(guān)系,將測(cè)量掃描區(qū)域的微觀高度信息和掃描采樣點(diǎn)組織映射為微觀輪廓,經(jīng)高斯濾波處理和評(píng)價(jià)從而得到測(cè)量對(duì)象的表面粗糙度信息。光譜共焦技術(shù)可以在不破壞樣品的情況下進(jìn)行分析。蕪湖光譜共焦
光譜共焦傳感器作為一種新型高精密傳感器,其測(cè) 量精密度可達(dá) 土 0.02%。開始產(chǎn)生在法國(guó)的,相較于光柵尺、容柵 或電感器電臺(tái)廣播、電感器差動(dòng)變壓器式偏移傳感器,其在偏移測(cè)量方面的優(yōu)勢(shì)更加明顯。現(xiàn)如今,因?yàn)楣庾V共焦傳感器擁有高精密、,因而,其在幾何量高精密測(cè)量層面的應(yīng)用愈來愈普遍,如漫反射光及平面圖反射面的偏移測(cè)量、平整度測(cè)量、塑料薄膜及透明材料薄厚測(cè)量、外表粗糙度測(cè)量等。在偏移測(cè)量層面,自光譜共焦傳感器面世至今,它基本功能就是測(cè)量偏移。馬敬等對(duì)光譜共焦傳感器的散射目鏡進(jìn)行分析,制定了散射目鏡的構(gòu)造,提升了光譜共焦傳感器的各項(xiàng)特性;畢 超 等 利 用光譜共焦傳感器完成了對(duì)飛機(jī)發(fā)動(dòng)機(jī)電機(jī)轉(zhuǎn)子葉子空隙的高精密、高效率的測(cè)量。在平整度測(cè)量層面,位恒政等對(duì)光譜共焦傳感器的檢測(cè)誤差進(jìn)行分析,在其中,對(duì)其平面圖檢測(cè)誤差科學(xué)研究時(shí),利用光譜共焦傳感器對(duì)圓平晶的平整度開展測(cè)量,獲得了平面圖檢測(cè)誤差值。青海推薦光譜共焦光譜共焦技術(shù)具有很大的市場(chǎng)潛力。
光譜共焦位移傳感器原理,由光源、透鏡組、控制箱等組成。光源發(fā)出1束白光,透鏡組先將白光發(fā)散成一系列波長(zhǎng)不同的單色光,然后經(jīng)同軸聚焦在一定范圍內(nèi)形成1個(gè)連續(xù)的焦點(diǎn)組,每個(gè)焦點(diǎn)的單色光波長(zhǎng)對(duì)應(yīng)1個(gè)軸向位置。當(dāng)樣品處于焦點(diǎn)范圍內(nèi)時(shí),樣品表面將聚焦后的光反射回去。這些反射回來的光經(jīng)過與鏡頭組焦距相同的聚焦鏡再次聚焦后通過狹縫進(jìn)入控制箱中的單色儀。因此,只有焦點(diǎn)位置正好處于樣品表面的單色光才能聚焦在狹縫上。單色儀將該波長(zhǎng)的光分離出來,由控制箱中的光電組件識(shí)別并 得到樣品的軸向位置。采用高數(shù)值孔徑的聚焦鏡頭可以使傳感器達(dá)到較高分辨率,滿足薄膜厚度分布測(cè)量要求。
光譜共焦測(cè)量技術(shù)由于其具有測(cè)量精度高、測(cè)量速度快、可以實(shí)現(xiàn)非接觸測(cè)量的獨(dú)特優(yōu)勢(shì)而被大量應(yīng)用于工業(yè)級(jí)測(cè)量。讓我們先來看一下光譜共焦技術(shù)的起源和光譜共焦技術(shù)在精密幾何量計(jì)量測(cè)試中的成熟典型應(yīng)用。共焦顯微術(shù)的概念首先是由美國(guó)的 Minsky 于 1955年提出, 其利用共焦原理搭建臺(tái)共焦顯微鏡, 并于1957年申請(qǐng)了專利。自20世紀(jì)90年代, 隨著計(jì)算機(jī)技術(shù)的飛速發(fā)展, 共焦顯微術(shù)成了研究的熱點(diǎn),得到快速的發(fā)展。光譜共焦技術(shù)是在共焦顯微術(shù)基礎(chǔ)上發(fā)展而來,其無需軸向掃描, 直接由波長(zhǎng)對(duì)應(yīng)軸向距離信息, 從而大幅提高測(cè)量速度。 而基于光譜共焦技術(shù)的傳感器是近年來出現(xiàn)的一種高精度、 非接觸式的新型傳感器, 目前精度上可達(dá)nm量級(jí)。 共焦測(cè)量術(shù)由于其高精度、允許被測(cè)表面有更大的傾斜角、測(cè)量速度快、實(shí)時(shí)性高、對(duì)被測(cè)表面狀況要求低、以及高分辨率的獨(dú)特優(yōu)勢(shì),迅速成為工業(yè)測(cè)量的熱門傳感器,在生物醫(yī)學(xué)、材料科學(xué)、半導(dǎo)體制造、 表面工程研究、 精密測(cè)量等領(lǐng)域得到大量應(yīng)用。激光共焦掃描顯微鏡將被測(cè)物體沿光軸移動(dòng)或?qū)⑼哥R沿光軸移動(dòng)。
光譜共焦位移傳感器是一種基于光波長(zhǎng)偏移調(diào)制的非接觸式位移傳感器。它也是一種新型極高精密度、極高可靠性的光學(xué)位移傳感器,近些年對(duì)迅速、精確的非接觸式測(cè)量變得更加關(guān)鍵。光譜共焦位移傳感器不但可以精確測(cè)量偏移,還可用作圓直徑的精確測(cè)量,及其塑料薄膜的折光率和厚度的精確測(cè)量,在電子光學(xué)計(jì)量檢定、光化學(xué)反應(yīng)、生物醫(yī)學(xué)工程電子光學(xué)等領(lǐng)域具備大量應(yīng)用市場(chǎng)前景。光譜共焦位移傳感器的誕生歸功于共聚焦顯微鏡研究。它們工作中原理類似,都基于共焦原理。1955年,馬文·明斯基依據(jù)共焦原理研發(fā)出共焦光學(xué)顯微鏡。接著,Molesini等于1984年給出了光譜深層掃描儀原理,并將其用于表面輪廓儀。后來在1992年,Browne等人又把它運(yùn)用到共聚焦顯微鏡中,應(yīng)用特殊目鏡造成散射開展高度測(cè)量,不用彩色掃描,提升了測(cè)量速度。a.Ruprecht等運(yùn)用透射分束制定了超色差鏡片,a.Miks探討了運(yùn)用與不一樣玻璃材質(zhì)連接的鏡片得到鏡頭焦距與波長(zhǎng)線性關(guān)系的辦法。除開具有μm乃至納米技術(shù)屏幕分辨率以外,光譜共焦位移傳感器還具備對(duì)表層質(zhì)量要求低,容許更多的傾斜度和達(dá)到千HZ的輸出功率的優(yōu)勢(shì)。光譜共焦位移傳感器廣泛應(yīng)用于制造領(lǐng)域,如半導(dǎo)體制造、精密機(jī)械制造等。青海推薦光譜共焦
光譜共焦位移傳感器可以實(shí)時(shí)監(jiān)測(cè)材料的變化情況,對(duì)于研究材料的力學(xué)性能具有重要意義。蕪湖光譜共焦
采用對(duì)比測(cè)試方法,首先對(duì)基于白光共焦光譜技術(shù)的靶丸外表面輪廓測(cè)量精度進(jìn)行了考核,圖5(a)是靶丸外表面輪廓的原子力顯微鏡輪廓儀和白光共焦光譜輪廓儀的測(cè)量曲線。為了便于比較,將原子力顯微鏡輪廓儀的測(cè)量數(shù)據(jù)進(jìn)行了偏移。從圖中可以看出,二者的低階輪廓整體相似,局部的輪廓信息存在一定的偏差,原因在于二者在靶丸赤道附近的精確測(cè)量圓周輪廓結(jié)果不一致;此外,白光共焦光譜的信噪比較原子力低,這表明白光共焦光譜適用于靶丸表面低階的輪廓誤差的測(cè)量。圖5(b)是靶丸外表面輪廓原子力顯微鏡輪廓儀測(cè)量數(shù)據(jù)和白光共焦光譜輪廓儀測(cè)量數(shù)據(jù)的功率譜曲線,從圖中可以看出,在模數(shù)低于100的功率譜范圍內(nèi),兩種方法的測(cè)量結(jié)果一致性較好,當(dāng)模數(shù)大于100時(shí),白光共焦光譜的測(cè)量數(shù)據(jù)大于原子力顯微鏡的測(cè)量數(shù)據(jù),這也反應(yīng)了白光共焦光譜儀在高頻段測(cè)量數(shù)據(jù)信噪比相對(duì)較差的特點(diǎn)。由于光譜傳感器Z向分辨率比原子力低一個(gè)量級(jí),同時(shí),受環(huán)境振動(dòng)、光譜儀采樣率及樣品表面散射光等因素的影響,共焦光譜檢測(cè)數(shù)據(jù)高頻隨機(jī)噪聲可達(dá)100nm左右。蕪湖光譜共焦