納米壓痕法:納米壓痕硬度法是一類測量材料表面力學性能 的先進技術(shù)。其原理是在加載過程中 試樣表面在壓頭作用下首先發(fā)生彈性變形,隨著載荷的增加試樣開始發(fā)生塑性變形,加載曲線呈非線性,卸載曲線反映被測物體的彈性恢復過程。通過分析加卸載曲線可以得到材料的硬度和彈性模量等參量。納米壓痕法不只可以測量材料的硬度和彈性模量,還可以根據(jù)壓頭壓縮過程中脆性材料產(chǎn)生的裂紋估算材料的斷裂韌性,根據(jù)材料的位移壓力曲線與時間的相關(guān)性獲悉材料的蠕變特性。除此之外,納米壓痕法還用于納米膜厚度、微結(jié)構(gòu),如微梁的剛度與撓度等的測量。納米力學測試可以應用于納米材料的研究和開發(fā),以及納米器件的設(shè)計和制造。廣州新能源納米力學測試原理
納米科學與技術(shù)是近二十年來發(fā)展起來的一門前沿和交叉學科,納米力學作為其中的一個分支,對其他分支學科如納米材料學、物理學、生物醫(yī)學等都有著重要的支撐作用。下面簡要介紹一下目前應用較普遍的兩類微納米力學測試方法:納米壓痕方法和基于原子力顯微鏡的納米力學測試方法。納米壓痕是20 世紀90 年代初期快速發(fā)展起來的一種微納米力學測試方法,是研究微納米尺度材料力學性能的重要方法之一,在科研和工業(yè)領(lǐng)域都有著普遍的應用。納米壓痕的壓入深度在一般在納米量級,遠小于傳統(tǒng)壓痕的微米或毫米量級。限于光學顯微鏡的分辨率,無法直接對納米壓痕的尺寸進行精確測量。四川材料科學納米力學測試通過納米力學測試,我們可以評估納米材料在極端環(huán)境下的穩(wěn)定性和耐久性。
原位納米力學測試系統(tǒng)是一種用于材料科學領(lǐng)域的儀器,于2011年10月27日啟用。壓痕測試單元:(1)可實現(xiàn)70nN~30mN不同加載載荷,載荷分辨率為3nN;(2)位移分辨率:0.006nm,較小位移:0.2nm,較大位移:5um;(3)室溫熱漂移:0.05nm/s;(4)更換壓頭時間:60s。能夠?qū)崿F(xiàn)薄膜或其他金屬或非金屬材料的壓痕、劃痕、摩擦磨損、微彎曲、高溫測試及微彎曲、NanoDMA、模量成像等功能。力學測試芯片大小只為幾平方毫米,亦可放置在電子顯微鏡真空腔中進行原位實時檢測。
AFAM 的基本原理是利用探針與樣品的接觸振動來對材料納米尺度的彈性性能進行成像或測量。AFAM 于20 世紀90 年代中期由德國薩爾布呂肯無損檢測研究所的Rabe 博士(女) 首先提出,較初為單點測量模式。2000 年前后,她們采用逐點掃頻的方式實現(xiàn)了模量成像功能,但是成像的速度很慢,一幅128×128 像素的圖像需要大約30min,導致圖像的熱漂移比較嚴重。2005 年,美國國家標準局的Hurley 博士(女) 采用DSP 電路控制掃頻和探針的移動,將成像速度提高了4~5倍(一幅256×256 像素的圖像需要大約25min)。納米力學測試可以揭示納米材料在受力過程中的微觀結(jié)構(gòu)變化和能量耗散機制。
日本:S.Yoshida主持的Yoshida納米機械項目主要進行以下二個方面的研究:⑴.利用改制的掃描隧道顯微鏡進行微形貌測量,已成功的應用于石墨表面和生物樣本的納米級測量;⑵.利用激光干涉儀測距,在激光干涉儀中其開發(fā)的雙波長法限制了空氣湍流造成的誤差影響;其實驗裝置具有1n m的測量控制精度。日本國家計量研究所(NRLM)研制了一套由穩(wěn)頻塞曼激光光源、四光束偏振邁克爾干涉儀和數(shù)據(jù)分析電子系統(tǒng)組成的新型干涉儀,該所精密測量已涉及一些基本常數(shù)的決定這一類的研究,如硅晶格間距、磁通量等,其掃描微動系統(tǒng)主要采用基于柔性鉸鏈機構(gòu)的微動工作臺。測試內(nèi)容豐富多樣,包括硬度、彈性模量、摩擦系數(shù)等,助力材料研究。四川材料科學納米力學測試
納米機器人研發(fā)中,力學性能測試至關(guān)重要,以確保其在復雜環(huán)境中的穩(wěn)定性。廣州新能源納米力學測試原理
本文中主要對當今幾種主要材料納觀力學與納米材料力學特性測試方法:納米硬度技術(shù)、納米云紋技術(shù)、掃描力顯微鏡技術(shù)等進行概述。納米硬度技術(shù)。隨著現(xiàn)代材料表面工程、微電子、集成微光機電 系統(tǒng)、生物和醫(yī)學材料的發(fā)展試樣本身或表面改性層厚度越來越小。傳統(tǒng)的硬度測量已無法滿足新材料研究的需要,于是納米硬度技術(shù)應運而生。納米硬度計是納米硬度測量的主要儀器,它是一種檢測材料微小體積內(nèi)力學性能的測試儀器,包括壓痕硬度和劃痕硬度兩種工作模式。由于壓痕或劃痕深度一般控制在微米甚至納米尺度,因此該類儀器已成為電子薄膜、涂層、材料表面及其改性的力學性能檢測的理想手段。它不需要將表層從基體上剝離,便可直接給出材料表層力學性質(zhì)的空間分布。廣州新能源納米力學測試原理