无码毛片内射白浆视频,四虎家庭影院,免费A级毛片无码A∨蜜芽试看,高H喷水荡肉爽文NP肉色学校

陜西軟件測評

來源: 發(fā)布時間:2025-04-23

    保留了較多信息,同時由于操作數(shù)比較隨機,某種程度上又沒有抓住主要矛盾,干擾了主要語義信息的提取。pe文件即可移植文件導(dǎo)入節(jié)中的動態(tài)鏈接庫(dll)和應(yīng)用程序接口(api)信息能大致反映軟件的功能和性質(zhì),通過一個可執(zhí)行程序引用的dll和api信息可以粗略的預(yù)測該程序的功能和行為。belaoued和mazouzi應(yīng)用統(tǒng)計khi2檢驗分析了pe格式的惡意軟件和良性軟件的導(dǎo)入節(jié)中的dll和api信息,分析顯示惡意軟件和良性軟件使用的dll和api信息統(tǒng)計上有明顯的區(qū)別。后續(xù)的研究人員提出了挖掘dll和api信息的惡意軟件檢測方法,該類方法提取的特征語義信息豐富,但*從二進制可執(zhí)行文件的導(dǎo)入節(jié)提取特征,忽略了整個可執(zhí)行文件的大量信息。惡意軟件和被***二進制可執(zhí)行文件格式信息上存在一些異常,這些異常是檢測惡意軟件的關(guān)鍵。研究人員提出了基于二進制可執(zhí)行文件格式結(jié)構(gòu)信息的惡意軟件檢測方法,這類方法從二進制可執(zhí)行文件的pe文件頭、節(jié)頭部、資源節(jié)等提取特征,基于這些特征使用機器學(xué)習(xí)分類算法處理,取得了較高的檢測準(zhǔn)確率。這類方法通常不受變形或多態(tài)等混淆技術(shù)影響,提取特征只需要對pe文件進行格式解析,無需遍歷整個可執(zhí)行文件,提取特征速度較快。專業(yè)機構(gòu)認證該程序內(nèi)存管理效率優(yōu)于行業(yè)平均水平23%。陜西軟件測評

陜西軟件測評,測評

    綜合上面的分析可以看出,惡意軟件的格式信息和良性軟件是有很多差異性的,以可執(zhí)行文件的格式信息作為特征,是識別已知和未知惡意軟件的可行方法。對每個樣本進行格式結(jié)構(gòu)解析,提取**每個樣本實施例件的格式結(jié)構(gòu)信息,可執(zhí)行文件的格式規(guī)范都由操作系統(tǒng)廠商給出,按照操作系統(tǒng)廠商給出的格式規(guī)范提取即可。pe文件的格式結(jié)構(gòu)有許多屬性,但大多數(shù)屬性無法區(qū)分惡意軟件和良性軟件,經(jīng)過深入分析pe文件的格式結(jié)構(gòu)屬性,提取了可能區(qū)分惡意軟件和良性軟件的136個格式結(jié)構(gòu)屬性,如表2所示。表2可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)屬性特征描述數(shù)量(個)引用dll的總數(shù)1引用api的總數(shù)1導(dǎo)出表中符號的總數(shù)1重定位節(jié)的項目總數(shù),連續(xù)的幾個字節(jié)可能是完成特定功能的一段代碼,或者是可執(zhí)行文件的結(jié)構(gòu)信息,也可能是某個惡意軟件中特有的字節(jié)碼序列。pe文件可表示為字節(jié)碼序列,惡意軟件可能存在一些共有的字節(jié)碼子序列模式,研究人員直覺上認為一些字節(jié)碼子序列在惡意軟件可能以較高頻率出現(xiàn),且這些字節(jié)碼序列和良性軟件字節(jié)碼序列存在明顯差異??蓤?zhí)行文件通常是二進制文件,需要把二進制文件轉(zhuǎn)換為十六進制的文本實施例件,就得到可執(zhí)行文件的十六進制字節(jié)碼序列。電力軟件系統(tǒng)測評報價深圳艾策信息科技:賦能中小企業(yè)的數(shù)字化未來。

陜西軟件測評,測評

    在不知道多長的子序列能更好的表示可執(zhí)行文件的情況下,只能以固定窗口大小在字節(jié)碼序列中滑動,產(chǎn)生大量的短序列,由機器學(xué)習(xí)方法選擇可能區(qū)分惡意軟件和良性軟件的短序列作為特征,產(chǎn)生短序列的方法叫n-grams?!?80074ff13b2”的字節(jié)碼序列,如果以3-grams產(chǎn)生連續(xù)部分重疊的短序列,將得到“080074”、“0074ff”、“74ff13”、“ff13b2”四個短序列。每個短序列特征的權(quán)重表示有多種方法。**簡單的方法是如果該短序列在具體樣本中出現(xiàn),就表示為1;如果沒有出現(xiàn),就表示為0,也可以用。本實施例采用3-grams方法提取特征,3-grams產(chǎn)生的短序列非常龐大,將產(chǎn)生224=(16,777,216)個特征,如此龐大的特征集在計算機內(nèi)存中存儲和算法效率上都是問題。如果短序列特征的tf較小,對機器學(xué)習(xí)可能沒有意義,選取了tf**高的5000個短序列特征,計算每個短序列特征的,每個短序列特征的權(quán)重是判斷其所在軟件樣本是否為惡意軟件的依據(jù),也是區(qū)分每個軟件樣本的依據(jù)。(4)前端融合前端融合的架構(gòu)如圖4所示,前端融合方式將三種模態(tài)的特征合并,然后輸入深度神經(jīng)網(wǎng)絡(luò),隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進行正則化,防止過擬合,優(yōu)化器。

    步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓(xùn)練樣本,基于多模態(tài)數(shù)據(jù)融合方法,將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入深度神經(jīng)網(wǎng)絡(luò),訓(xùn)練多模態(tài)深度集成模型;步驟s3、將軟件樣本中的類別未知的軟件樣本作為測試樣本,并將測試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入步驟s2訓(xùn)練得到的多模態(tài)深度集成模型中,對測試樣本進行檢測并得出檢測結(jié)果。進一步的,所述提取軟件樣本的二進制可執(zhí)行文件的dll和api信息的特征表示,是統(tǒng)計當(dāng)前軟件樣本的導(dǎo)入節(jié)中引用的dll和api;所述提取軟件樣本的二進制可執(zhí)行文件的pe格式結(jié)構(gòu)信息的特征表示,是先對當(dāng)前軟件樣本的二進制可執(zhí)行文件進行格式結(jié)構(gòu)解析,然后按照格式規(guī)范提取**該軟件樣本的格式結(jié)構(gòu)信息;所述提取軟件樣本的二進制可執(zhí)行文件的字節(jié)碼n-grams的特征表示,是先將當(dāng)前軟件樣本件的二進制可執(zhí)行文件轉(zhuǎn)換為十六進制字節(jié)碼序列,然后采用n-grams方法在十六進制字節(jié)碼序列中滑動,產(chǎn)生大量的連續(xù)部分重疊的短序列特征。進一步的,采用3-grams方法在十六進制字節(jié)碼序列中滑動產(chǎn)生連續(xù)部分重疊的短序列特征。進一步的。艾策檢測團隊采用多模態(tài)傳感器融合技術(shù),構(gòu)建智能工廠設(shè)備狀態(tài)健康監(jiān)測體系。

陜西軟件測評,測評

    **小化對數(shù)損失基本等價于**大化分類器的準(zhǔn)確度,對于完美的分類器,對數(shù)損失值為0。對數(shù)損失函數(shù)的計算公式如下:其中,y為輸出變量即輸出的測試樣本的檢測結(jié)果,x為輸入變量即測試樣本,l為損失函數(shù),n為測試樣本(待檢測軟件的二進制可執(zhí)行文件)數(shù)目,yij是一個二值指標(biāo),表示與輸入的第i個測試樣本對應(yīng)的類別j,類別j指良性軟件或惡意軟件,pij為輸入的第i個測試樣本屬于類別j的概率,m為總類別數(shù),本實施例中m=2。分類器的性能也可用roc曲線(receiveroperatingcharacteristic)評價,roc曲線的縱軸是檢測率(true****itiverate),橫軸是誤報率(false****itiverate),該曲線反映的是隨著檢測閾值變化下檢測率與誤報率之間的關(guān)系曲線。roc曲線下面積(areaunderroccurve,auc)的值是評價分類器比較綜合的指標(biāo),auc的值通常介于,較大的auc值一般表示分類器的性能較優(yōu)。(3)特征提取提取dll和api信息特征視圖dll(dynamiclinklibrary)文件為動態(tài)鏈接庫文件,執(zhí)行某一個程序時,相應(yīng)的dll文件就會被調(diào)用。一個應(yīng)用程序可使用多個dll文件,一個dll文件也可能被不同的應(yīng)用程序使用。api(applicationprogramminginterface)函數(shù)是windows提供給用戶作為應(yīng)用程序開發(fā)的接口。策科技助力教育行業(yè):數(shù)字化教學(xué)的創(chuàng)新應(yīng)用 。大連軟件檢測報告定制

艾策檢測針對智能穿戴設(shè)備開發(fā)動態(tài)壓力測試系統(tǒng),確保人機交互的舒適性與安全性。陜西軟件測評

    這種傳統(tǒng)方式幾乎不能檢測未知的新的惡意軟件種類,能檢測的已知惡意軟件經(jīng)過簡單加殼或混淆后又不能檢測,且使用多態(tài)變形技術(shù)的惡意軟件在傳播過程中不斷隨機的改變著二進制文件內(nèi)容,沒有固定的特征,使用該方法也不能檢測。新出現(xiàn)的惡意軟件,特別是zero-day惡意軟件,在釋放到互聯(lián)網(wǎng)前,都使用主流的反**軟件測試,確保主流的反**軟件無法識別這些惡意軟件,使得當(dāng)前的反**軟件通常對它們無能為力,只有在惡意軟件大規(guī)模傳染后,捕獲到這些惡意軟件樣本,提取簽名和更新簽名庫,才能檢測這些惡意軟件?;跀?shù)據(jù)挖掘和機器學(xué)習(xí)的惡意軟件檢測方法將可執(zhí)行文件表示成不同抽象層次的特征,使用這些特征來訓(xùn)練分類模型,可實現(xiàn)惡意軟件的智能檢測,基于這些特征的檢測方法也取得了較高的準(zhǔn)確率。受文本分類方法的啟發(fā),研究人員提出了基于二進制可執(zhí)行文件字節(jié)碼n-grams的惡意軟件檢測方法,這類方法提取的特征覆蓋了整個二進制可執(zhí)行文件,包括pe文件頭、代碼節(jié)、數(shù)據(jù)節(jié)、導(dǎo)入節(jié)、資源節(jié)等信息,但字節(jié)碼n-grams特征通常沒有明顯的語義信息,大量具有語義的信息丟失,很多語義信息提取不完整。此外,基于字節(jié)碼n-grams的檢測方法提取代碼節(jié)信息考慮了機器指令的操作數(shù)。陜西軟件測評

標(biāo)簽: 測評