4)建立與用戶或客戶的聯(lián)系,收集他們對(duì)測(cè)試的需求和建議。(II)制訂技術(shù)培訓(xùn)計(jì)劃為高效率地完成好測(cè)試工作,測(cè)試人員必須經(jīng)過(guò)適當(dāng)?shù)呐嘤?xùn)。制訂技術(shù)培訓(xùn)規(guī)劃有3個(gè)子目標(biāo):1)制訂**的培訓(xùn)計(jì)劃,并在管理上提供包括經(jīng)費(fèi)在內(nèi)的支持。2)制訂培訓(xùn)目標(biāo)和具體的培訓(xùn)計(jì)劃。3)成立培訓(xùn)組,配備相應(yīng)的工具,設(shè)備和教材(III)軟件全生命周期測(cè)試提高測(cè)試成熟度和改善軟件產(chǎn)品質(zhì)量都要求將測(cè)試工作與軟件生命周期中的各個(gè)階段聯(lián)系起來(lái)。該目標(biāo)有4個(gè)子目標(biāo):1)將測(cè)試階段劃分為子階段,并與軟件生命周期的各階段相聯(lián)系。2)基于已定義的測(cè)試子階段,采用軟件生命周期V字模型。3)制訂與淵試相關(guān)的工作產(chǎn)品的標(biāo)準(zhǔn)。4)建立測(cè)試人員與開(kāi)發(fā)人員共同工作的機(jī)制。這種機(jī)制有利于促進(jìn)將測(cè)試活動(dòng)集成于軟件生命周期中(IV)控制和監(jiān)視測(cè)試過(guò)程為控制和監(jiān)視測(cè)試過(guò)程,軟件**需采取相應(yīng)措施,如:制訂測(cè)試產(chǎn)品的標(biāo)準(zhǔn),制訂與測(cè)試相關(guān)的偶發(fā)事件的處理預(yù)案,確定測(cè)試?yán)锍瘫?,確定評(píng)估測(cè)試效率的度量,建立測(cè)試日志等??刂坪捅O(jiān)視測(cè)試過(guò)程有3個(gè)子目標(biāo):1)制訂控制和監(jiān)視測(cè)試過(guò)程的機(jī)制和政策。2)定義,記錄并分配一組與測(cè)試過(guò)程相關(guān)的基本測(cè)量。3)開(kāi)發(fā),記錄并文檔化一組糾偏措施和偶發(fā)事件處理預(yù)案。數(shù)字化轉(zhuǎn)型中的挑戰(zhàn)與應(yīng)對(duì):艾策科技的經(jīng)驗(yàn)分享。功能軟件檢測(cè)報(bào)告定制
將三種模態(tài)特征和三種融合方法的結(jié)果進(jìn)行了對(duì)比,如表3所示。從表3可以看出,前端融合和中間融合較基于模態(tài)特征的檢測(cè)準(zhǔn)確率更高,損失率更低。后端融合是三種融合方法中較弱的,雖然明顯優(yōu)于基于dll和api信息、pe格式結(jié)構(gòu)特征的實(shí)驗(yàn)結(jié)果,但稍弱于基于字節(jié)碼3-grams特征的結(jié)果。中間融合是三種融合方法中**好的,各項(xiàng)性能指標(biāo)都非常接近**優(yōu)值。表3實(shí)驗(yàn)結(jié)果對(duì)比本實(shí)施例提出了基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測(cè)方法,提取了三種模態(tài)的特征(dll和api信息、pe格式結(jié)構(gòu)信息和字節(jié)碼3-grams),提出了通過(guò)三種融合方式(前端融合、后端融合、中間融合)集成三種模態(tài)的特征,有效提高惡意軟件檢測(cè)的準(zhǔn)確率和魯棒性。實(shí)驗(yàn)結(jié)果顯示,相對(duì)**且互補(bǔ)的特征視圖和不同深度學(xué)習(xí)融合機(jī)制的使用明顯提高了檢測(cè)方法的檢測(cè)能力和泛化性能,其中較優(yōu)的中間融合方法取得了%的準(zhǔn)確率,對(duì)數(shù)損失為,auc值為,各項(xiàng)性能指標(biāo)已接近**優(yōu)值??紤]到樣本集可能存在噪聲,本實(shí)施例提出的方法已取得了比較理想的結(jié)果。由于惡意軟件很難同時(shí)偽造多個(gè)模態(tài)的特征,本實(shí)施例提出的方法比單模態(tài)特征方法更魯棒。以上所述*為本發(fā)明的較佳實(shí)施例而已,并非用于限定本發(fā)明的保護(hù)范圍。醫(yī)院信息系統(tǒng)軟件評(píng)測(cè)收費(fèi)代碼審計(jì)發(fā)現(xiàn)2處潛在內(nèi)存泄漏風(fēng)險(xiǎn),建議版本迭代修復(fù)。
并將測(cè)試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入步驟s2訓(xùn)練得到的多模態(tài)深度集成模型中,對(duì)測(cè)試樣本進(jìn)行檢測(cè)并得出檢測(cè)結(jié)果。實(shí)驗(yàn)結(jié)果與分析(1)樣本數(shù)據(jù)集選取實(shí)驗(yàn)評(píng)估使用了不同時(shí)期的惡意軟件和良性軟件樣本,包含了7871個(gè)良性軟件樣本和8269個(gè)惡意軟件樣本,其中4103個(gè)惡意軟件樣本是2011年以前發(fā)現(xiàn)的,4166個(gè)惡意軟件樣本是近年來(lái)新發(fā)現(xiàn)的;3918個(gè)良性軟件樣本是從全新安裝的windowsxpsp3系統(tǒng)中收集的,3953個(gè)良性軟件樣本是從全新安裝的32位windows7系統(tǒng)中收集的。所有的惡意軟件樣本都是從vxheavens網(wǎng)站中收集的,所有的樣本格式都是windowspe格式的,樣本數(shù)據(jù)集構(gòu)成如表1所示。表1樣本數(shù)據(jù)集類別惡意軟件樣本良性軟件樣本早期樣本41033918近期樣本41663953合計(jì)82697871(2)評(píng)價(jià)指標(biāo)及方法分類性能主要用兩個(gè)指標(biāo)來(lái)評(píng)估:準(zhǔn)確率和對(duì)數(shù)損失。準(zhǔn)確率測(cè)量所有預(yù)測(cè)中正確預(yù)測(cè)的樣本占總樣本的比例,*憑準(zhǔn)確率通常不足以評(píng)估預(yù)測(cè)的魯棒性,因此還需要使用對(duì)數(shù)損失。對(duì)數(shù)損失(logarithmicloss),也稱交叉熵?fù)p失(cross-entropyloss),是在概率估計(jì)上定義的,用于測(cè)量預(yù)測(cè)類別與真實(shí)類別之間的差距大小。
后端融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對(duì)數(shù)損失是,混淆矩陣如圖13所示,規(guī)范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構(gòu)如圖16所示,中間融合方式用深度神經(jīng)網(wǎng)絡(luò)從三種模態(tài)的特征分別抽取高等特征表示,然后合并學(xué)習(xí)得到的特征表示,再作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入訓(xùn)練模型,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過(guò)擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。圖16中,用于抽取dll和api信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含3個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是128,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且3個(gè)隱含層中間間隔設(shè)置有dropout層。用于抽取格式信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,其第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且2個(gè)隱含層中間設(shè)置有dropout層。用于抽取字節(jié)碼n-grams特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含4個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是512,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是384,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是256,第四個(gè)隱含層的神經(jīng)元個(gè)數(shù)是125。艾策科技發(fā)布產(chǎn)品:智能企業(yè)管理平臺(tái)。
保留了較多信息,同時(shí)由于操作數(shù)比較隨機(jī),某種程度上又沒(méi)有抓住主要矛盾,干擾了主要語(yǔ)義信息的提取。pe文件即可移植文件導(dǎo)入節(jié)中的動(dòng)態(tài)鏈接庫(kù)(dll)和應(yīng)用程序接口(api)信息能大致反映軟件的功能和性質(zhì),通過(guò)一個(gè)可執(zhí)行程序引用的dll和api信息可以粗略的預(yù)測(cè)該程序的功能和行為。belaoued和mazouzi應(yīng)用統(tǒng)計(jì)khi2檢驗(yàn)分析了pe格式的惡意軟件和良性軟件的導(dǎo)入節(jié)中的dll和api信息,分析顯示惡意軟件和良性軟件使用的dll和api信息統(tǒng)計(jì)上有明顯的區(qū)別。后續(xù)的研究人員提出了挖掘dll和api信息的惡意軟件檢測(cè)方法,該類方法提取的特征語(yǔ)義信息豐富,但*從二進(jìn)制可執(zhí)行文件的導(dǎo)入節(jié)提取特征,忽略了整個(gè)可執(zhí)行文件的大量信息。惡意軟件和被***二進(jìn)制可執(zhí)行文件格式信息上存在一些異常,這些異常是檢測(cè)惡意軟件的關(guān)鍵。研究人員提出了基于二進(jìn)制可執(zhí)行文件格式結(jié)構(gòu)信息的惡意軟件檢測(cè)方法,這類方法從二進(jìn)制可執(zhí)行文件的pe文件頭、節(jié)頭部、資源節(jié)等提取特征,基于這些特征使用機(jī)器學(xué)習(xí)分類算法處理,取得了較高的檢測(cè)準(zhǔn)確率。這類方法通常不受變形或多態(tài)等混淆技術(shù)影響,提取特征只需要對(duì)pe文件進(jìn)行格式解析,無(wú)需遍歷整個(gè)可執(zhí)行文件,提取特征速度較快。覆蓋軟件功能與性能的多維度檢測(cè)方案設(shè)計(jì)與實(shí)施!貴州第三方軟件檢測(cè)單位
艾策檢測(cè)針對(duì)智能穿戴設(shè)備開(kāi)發(fā)動(dòng)態(tài)壓力測(cè)試系統(tǒng),確保人機(jī)交互的舒適性與安全性。功能軟件檢測(cè)報(bào)告定制
所以第三方軟件檢測(cè)機(jī)構(gòu)可以說(shuō)是使用loadrunner軟件工具較多的一個(gè)業(yè)務(wù)領(lǐng)域,也能保證軟件測(cè)試報(bào)告結(jié)果的性能準(zhǔn)確。二、軟件測(cè)試漏洞掃描工具在客戶需要的軟件測(cè)試報(bào)告中,軟件安全的滲透測(cè)試和漏洞掃描一般會(huì)作為信息安全性的軟件測(cè)試報(bào)告內(nèi)容。首先來(lái)說(shuō)一下漏洞掃描的工具,這部分在國(guó)際上有ibm很出名的一個(gè)掃描測(cè)試工具appscan,以及針對(duì)web等的全量化掃描器nessus。國(guó)產(chǎn)的目前的綠盟漏洞掃描設(shè)備也做得非常好,個(gè)人其實(shí)更建議用綠盟的漏洞掃描設(shè)備,規(guī)則全,掃描速度快,測(cè)試報(bào)告也更符合國(guó)情。三、軟件測(cè)試滲透測(cè)試工具滲透測(cè)試屬于第三方軟件檢測(cè)測(cè)評(píng)過(guò)程中的比較專業(yè)的一個(gè)測(cè)試項(xiàng),對(duì)技術(shù)的要求也比較高,一般使用的工具為burpsuite這個(gè)專業(yè)安全工具,這個(gè)工具挺全能的,不光是安全服務(wù)常用的工具,同樣也認(rèn)可作為軟件滲透測(cè)試的工具輸出??偟膩?lái)說(shuō),第三方軟件檢測(cè)的那些軟件測(cè)試工具,都是為了確保軟件測(cè)試報(bào)告結(jié)果的整體有效性來(lái)進(jìn)行使用,也是第三方檢測(cè)機(jī)構(gòu)作為自主實(shí)驗(yàn)室的這個(gè)性質(zhì),提供了具備正規(guī)效力的軟件測(cè)試過(guò)程和可靠的第三方檢測(cè)結(jié)果,所以客戶可以有一個(gè)初步的軟件測(cè)試工具了解,也對(duì)獲取一份有效的第三方軟件測(cè)試報(bào)告的結(jié)果可以有更清楚的認(rèn)識(shí)。功能軟件檢測(cè)報(bào)告定制