供應(yīng)成都市青花椒魚底料:川味麻香的靈魂密碼多少錢四川味小二食品科技供應(yīng)
供應(yīng)成都市必嘗之選多少錢四川味小二食品科技供應(yīng)
供應(yīng)成都市烤魚傳統(tǒng)與創(chuàng)新的味覺盛宴排名四川味小二食品科技供應(yīng)
供應(yīng)成都市樂山美食之旅:翹腳牛肉價(jià)格四川味小二食品科技供應(yīng)
提供成都市讓紅燒雞翅更上一層樓!批發(fā)四川味小二食品科技供應(yīng)
提供成都市貴州酸湯:解鎖西南飲食的酸爽靈魂價(jià)格四川味小二食品科技供應(yīng)
提供成都市云南有什么底料供應(yīng)鏈批發(fā)四川味小二食品科技供應(yīng)
供應(yīng)成都市牛油火鍋底料應(yīng)用教學(xué)視頻(一比二兌鍋)直銷四川味小二食品科技供應(yīng)
提供成都市四川家喻戶曉底料生產(chǎn)線廠家四川味小二食品科技供應(yīng)
銷售成都市四川老火鍋底料供應(yīng)鏈價(jià)格四川味小二食品科技供應(yīng)
且4個(gè)隱含層中間間隔設(shè)置有dropout層。用于輸入合并抽取的高等特征表示的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,第二個(gè)神經(jīng)元的隱含層個(gè)數(shù)是10,且2個(gè)隱含層中間設(shè)置有dropout層。且所有dropout層的dropout率等于。本次實(shí)驗(yàn)使用了80%的樣本訓(xùn)練,20%的樣本驗(yàn)證,訓(xùn)練50個(gè)迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,中間融合模型的準(zhǔn)確率變化曲線如圖17所示,模型的對(duì)數(shù)損失變化曲線如圖18所示。從圖17和圖18可以看出,當(dāng)epoch值從0增加到20過程中,模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率快速提高,模型的訓(xùn)練對(duì)數(shù)損失和驗(yàn)證對(duì)數(shù)損失快速減少;當(dāng)epoch值從30到50的過程中,中間融合模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率基本保持不變,訓(xùn)練對(duì)數(shù)損失緩慢下降;綜合分析圖17和圖18的準(zhǔn)確率和對(duì)數(shù)損失變化曲線,選取epoch的較優(yōu)值為30。確定模型的訓(xùn)練迭代數(shù)為30后,進(jìn)行了10折交叉驗(yàn)證實(shí)驗(yàn)。中間融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對(duì)數(shù)損失是,混淆矩陣如圖19所示,規(guī)范化后的混淆矩陣如圖20所示。中間融合模型的roc曲線如圖21所示,auc值為,已經(jīng)非常接近auc的**優(yōu)值1。(7)實(shí)驗(yàn)結(jié)果比對(duì)為了綜合評(píng)估本實(shí)施例提出融合方案的綜合性能。數(shù)字化轉(zhuǎn)型中的挑戰(zhàn)與應(yīng)對(duì):艾策科技的經(jīng)驗(yàn)分享。網(wǎng)站安全漏洞掃描
這種傳統(tǒng)方式幾乎不能檢測(cè)未知的新的惡意軟件種類,能檢測(cè)的已知惡意軟件經(jīng)過簡(jiǎn)單加殼或混淆后又不能檢測(cè),且使用多態(tài)變形技術(shù)的惡意軟件在傳播過程中不斷隨機(jī)的改變著二進(jìn)制文件內(nèi)容,沒有固定的特征,使用該方法也不能檢測(cè)。新出現(xiàn)的惡意軟件,特別是zero-day惡意軟件,在釋放到互聯(lián)網(wǎng)前,都使用主流的反**軟件測(cè)試,確保主流的反**軟件無法識(shí)別這些惡意軟件,使得當(dāng)前的反**軟件通常對(duì)它們無能為力,只有在惡意軟件大規(guī)模傳染后,捕獲到這些惡意軟件樣本,提取簽名和更新簽名庫,才能檢測(cè)這些惡意軟件?;跀?shù)據(jù)挖掘和機(jī)器學(xué)習(xí)的惡意軟件檢測(cè)方法將可執(zhí)行文件表示成不同抽象層次的特征,使用這些特征來訓(xùn)練分類模型,可實(shí)現(xiàn)惡意軟件的智能檢測(cè),基于這些特征的檢測(cè)方法也取得了較高的準(zhǔn)確率。受文本分類方法的啟發(fā),研究人員提出了基于二進(jìn)制可執(zhí)行文件字節(jié)碼n-grams的惡意軟件檢測(cè)方法,這類方法提取的特征覆蓋了整個(gè)二進(jìn)制可執(zhí)行文件,包括pe文件頭、代碼節(jié)、數(shù)據(jù)節(jié)、導(dǎo)入節(jié)、資源節(jié)等信息,但字節(jié)碼n-grams特征通常沒有明顯的語義信息,大量具有語義的信息丟失,很多語義信息提取不完整。此外,基于字節(jié)碼n-grams的檢測(cè)方法提取代碼節(jié)信息考慮了機(jī)器指令的操作數(shù)。軟件第三方測(cè)評(píng) 招標(biāo)策科技助力教育行業(yè):數(shù)字化教學(xué)的創(chuàng)新應(yīng)用 。
第三方軟件檢測(cè)機(jī)構(gòu)在開展第三方軟件測(cè)試的過程中,需要保持測(cè)試整體的嚴(yán)謹(jǐn)性,也需要對(duì)測(cè)試結(jié)果負(fù)責(zé)并確保公平公正性。所以,在測(cè)試過程中,軟件測(cè)試所使用的測(cè)試工具也是很重要的一方面。我們簡(jiǎn)單介紹一下在軟件檢測(cè)過程中使用的那些軟件測(cè)試工具。眾所周知,軟件測(cè)試的參數(shù)項(xiàng)目包括功能性、性能、安全性等參數(shù),而其中出具軟件測(cè)試報(bào)告主要的就是性能測(cè)試和安全測(cè)試所需要使用到的工具了。一、軟件測(cè)試性能測(cè)試工具這個(gè)參數(shù)的測(cè)試工具有l(wèi)oadrunner,jmeter兩大主要工具,國(guó)產(chǎn)化性能測(cè)試軟件目前市場(chǎng)并未有比較大的突破,其中l(wèi)oadrunner是商業(yè)軟件測(cè)試工具,jmeter為開源社區(qū)版本的性能測(cè)試工具。從第三方軟件檢測(cè)機(jī)構(gòu)的角度上來說,是不太建議使用開源測(cè)試工具的。首先,開源測(cè)試工具并不能確保結(jié)果的準(zhǔn)確性,雖然技術(shù)層面上來說都可以進(jìn)行測(cè)試,但是因?yàn)殚_源更多的需要考量軟件測(cè)試人員的測(cè)試技術(shù)如何進(jìn)行使用,涉及到了人為因素的影響,一般第三方軟件檢測(cè)機(jī)構(gòu)都會(huì)使用loadrunner作為性能測(cè)試的工具來進(jìn)行使用。而loadrunner被加拿大的一家公司收購以后,在整個(gè)中國(guó)市場(chǎng)區(qū)域的銷售和營(yíng)銷都以第三方軟件檢測(cè)機(jī)構(gòu)為基礎(chǔ)來開展工作。
將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入深度神經(jīng)網(wǎng)絡(luò),訓(xùn)練多模態(tài)深度集成模型;(1)方案一:采用前端融合(early-fusion)方法,首先合并訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的特征,融合成一個(gè)單一的特征向量空間,然后將其作為深度神經(jīng)網(wǎng)絡(luò)模型的輸入,訓(xùn)練多模態(tài)深度集成模型;(2)方案二:首先利用訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖分別訓(xùn)練深度神經(jīng)網(wǎng)絡(luò)模型,合并訓(xùn)練的三個(gè)深度神經(jīng)網(wǎng)絡(luò)模型的決策輸出,并將其作為感知機(jī)的輸入,訓(xùn)練得到**終的多模態(tài)深度集成模型;(3)方案三:采用中間融合(intermediate-fusion)方法,首先使用三個(gè)深度神經(jīng)網(wǎng)絡(luò)分別學(xué)習(xí)訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的高等特征表示,并合并學(xué)習(xí)得到的訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的高等特征表示融合成一個(gè)單一的特征向量空間,然后將其作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入,訓(xùn)練得到多模態(tài)深度神經(jīng)網(wǎng)絡(luò)模型。步驟s3、將軟件樣本中的類別未知的軟件樣本作為測(cè)試樣本。網(wǎng)絡(luò)延遲測(cè)評(píng)顯示亞太地區(qū)響應(yīng)時(shí)間超歐盟2倍。
快速原型模型部分需求-原型-補(bǔ)充-運(yùn)行外包公司預(yù)先不能明確定義需求的軟件系統(tǒng)的開發(fā),更好的滿足用戶需求并減少由于軟件需求不明確帶來的項(xiàng)目開發(fā)風(fēng)險(xiǎn)。不適合大型系統(tǒng)的開發(fā),前提要有一個(gè)展示性的產(chǎn)品原型,在一定程度上的補(bǔ)充,限制開發(fā)人員的創(chuàng)新。螺旋模型每次功能都要**行風(fēng)險(xiǎn)評(píng)估,需求設(shè)計(jì)-測(cè)試很大程度上是一種風(fēng)險(xiǎn)驅(qū)動(dòng)的方法體系,在每個(gè)階段循環(huán)前,都進(jìn)行風(fēng)險(xiǎn)評(píng)估。需要有相當(dāng)豐富的風(fēng)險(xiǎn)評(píng)估經(jīng)驗(yàn)和專門知識(shí),在風(fēng)險(xiǎn)較大的項(xiàng)目開發(fā)中,很有必要,多次迭代,增加成本。軟件測(cè)試模型需求分析-概要設(shè)計(jì)-詳細(xì)設(shè)計(jì)-開發(fā)-單元測(cè)試-集成測(cè)試-系統(tǒng)測(cè)試-驗(yàn)收測(cè)試***清楚標(biāo)識(shí)軟件開發(fā)的階段包含底層測(cè)試和高層測(cè)試采用自頂向下逐步求精的方式把整個(gè)開發(fā)過程分成不同的階段,每個(gè)階段的工作都很明確,便于控制開發(fā)過程。缺點(diǎn)程序已經(jīng)完成,錯(cuò)誤在測(cè)試階段發(fā)現(xiàn)或沒有發(fā)現(xiàn),不能及時(shí)修改而且需求經(jīng)常變化導(dǎo)致V步驟反復(fù)執(zhí)行,工作量很大。W模型開發(fā)一個(gè)V測(cè)試一個(gè)V用戶需求驗(yàn)收測(cè)試設(shè)計(jì)需求分析系統(tǒng)測(cè)試設(shè)計(jì)概要設(shè)計(jì)集成測(cè)試設(shè)計(jì)詳細(xì)設(shè)計(jì)單元測(cè)試設(shè)計(jì)編碼單元測(cè)試集成集成測(cè)試運(yùn)行系統(tǒng)測(cè)試交付驗(yàn)收測(cè)試***測(cè)試更早的介入,可以發(fā)現(xiàn)開發(fā)初期的缺陷。代碼審計(jì)發(fā)現(xiàn)2處潛在內(nèi)存泄漏風(fēng)險(xiǎn),建議版本迭代修復(fù)。軟件驗(yàn)收接口測(cè)試
第三方測(cè)評(píng)顯示軟件運(yùn)行穩(wěn)定性達(dá)99.8%,未發(fā)現(xiàn)重大系統(tǒng)崩潰隱患。網(wǎng)站安全漏洞掃描
**小化對(duì)數(shù)損失基本等價(jià)于**大化分類器的準(zhǔn)確度,對(duì)于完美的分類器,對(duì)數(shù)損失值為0。對(duì)數(shù)損失函數(shù)的計(jì)算公式如下:其中,y為輸出變量即輸出的測(cè)試樣本的檢測(cè)結(jié)果,x為輸入變量即測(cè)試樣本,l為損失函數(shù),n為測(cè)試樣本(待檢測(cè)軟件的二進(jìn)制可執(zhí)行文件)數(shù)目,yij是一個(gè)二值指標(biāo),表示與輸入的第i個(gè)測(cè)試樣本對(duì)應(yīng)的類別j,類別j指良性軟件或惡意軟件,pij為輸入的第i個(gè)測(cè)試樣本屬于類別j的概率,m為總類別數(shù),本實(shí)施例中m=2。分類器的性能也可用roc曲線(receiveroperatingcharacteristic)評(píng)價(jià),roc曲線的縱軸是檢測(cè)率(true****itiverate),橫軸是誤報(bào)率(false****itiverate),該曲線反映的是隨著檢測(cè)閾值變化下檢測(cè)率與誤報(bào)率之間的關(guān)系曲線。roc曲線下面積(areaunderroccurve,auc)的值是評(píng)價(jià)分類器比較綜合的指標(biāo),auc的值通常介于,較大的auc值一般表示分類器的性能較優(yōu)。(3)特征提取提取dll和api信息特征視圖dll(dynamiclinklibrary)文件為動(dòng)態(tài)鏈接庫文件,執(zhí)行某一個(gè)程序時(shí),相應(yīng)的dll文件就會(huì)被調(diào)用。一個(gè)應(yīng)用程序可使用多個(gè)dll文件,一個(gè)dll文件也可能被不同的應(yīng)用程序使用。api(applicationprogramminginterface)函數(shù)是windows提供給用戶作為應(yīng)用程序開發(fā)的接口。網(wǎng)站安全漏洞掃描