個性化需求,專屬服務(wù):海綿定制如何滿足多樣化市場-海綿定制
如何選擇合適的過濾綿:提升過濾效率與延長使用壽命-過濾綿
揭秘物流網(wǎng)格海綿:如何在運輸中提供良好緩沖效果-網(wǎng)格海綿
寵物海綿爬梯:為寵物量身定制的沙發(fā)與床間通行神器-海綿爬梯
寵物友好家居設(shè)計:海綿爬梯讓沙發(fā)、樓梯、床觸手可及-海綿爬梯
如何挑選高效耐用的杯刷海綿:一份實用的購買指南-杯刷海綿
淘氣堡海綿材質(zhì)對比,哪種更適合你家孩子-淘氣堡海綿
海綿鞋擦:輕松去除鞋面污漬-海綿鞋擦
高效去除洗衣機內(nèi)毛發(fā):洗衣球海綿的神奇功效-洗衣球海綿
寵物海綿爬梯:安全、舒適且有趣-小型寵物海綿爬梯輔助器報價
所述生成軟件樣本的dll和api信息特征視圖,是先統(tǒng)計所有類別已知的軟件樣本的pe可執(zhí)行文件引用的dll和api信息,從中選取引用頻率**高的多個dll和api信息;然后判斷當(dāng)前的軟件樣本的導(dǎo)入節(jié)里是否存在選擇出的某個引用頻率**高的dll和api信息,如存在,則將當(dāng)前軟件樣本的該dll或api信息以1表示,否則將其以0表示,從而對當(dāng)前軟件樣本的所有dll和api信息進行表示形成當(dāng)前軟件樣本的dll和api信息特征視圖。進一步的,所述生成軟件樣本的格式信息特征視圖,是從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,形成當(dāng)前軟件樣本的格式信息特征視圖。進一步的,所述從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,是從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中確定存在特定格式異常的pe格式結(jié)構(gòu)特征以及存在明顯的統(tǒng)計差異的格式結(jié)構(gòu)特征;所述特定格式異常包括:(1)代碼從**后一節(jié)開始執(zhí)行,(2)節(jié)頭部可疑的屬性,(3)pe可選頭部有效尺寸的值不正確,(4)節(jié)之間的“間縫”,(5)可疑的代碼重定向,(6)可疑的代碼節(jié)名稱,(7)可疑的頭部***,(8)來自,(9)導(dǎo)入地址表被修改,(10)多個pe頭部,(11)可疑的重定位信息,。第三方測評顯示軟件運行穩(wěn)定性達99.8%,未發(fā)現(xiàn)重大系統(tǒng)崩潰隱患。安全檢測第三方機構(gòu)
坐標(biāo)點(0,1)**一個完美的分類器,它將所有的樣本都正確分類。roc曲線越接近左上角,該分類器的性能越好。從圖9可以看出,該方案的roc曲線非常接近左上角,性能較優(yōu)。另外,前端融合模型的auc值為。(5)后端融合后端融合的架構(gòu)如圖10所示,后端融合方式用三種模態(tài)的特征分別訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型,然后進行決策融合,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進行正則化,防止過擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。本次實驗使用了80%的樣本訓(xùn)練,20%的樣本驗證,訓(xùn)練50個迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,后端融合模型的準(zhǔn)確率變化曲線如圖11所示,模型的對數(shù)損失變化曲線如圖12所示。從圖11和圖12可以看出,當(dāng)epoch值從0增加到5過程中,模型的訓(xùn)練準(zhǔn)確率和驗證準(zhǔn)確率快速提高,模型的訓(xùn)練對數(shù)損失和驗證對數(shù)損失快速減少;當(dāng)epoch值從5到50的過程中,前端融合模型的訓(xùn)練準(zhǔn)確率和驗證準(zhǔn)確率小幅提高,訓(xùn)練對數(shù)損失和驗證對數(shù)損失緩慢下降;綜合分析圖11和圖12的準(zhǔn)確率和對數(shù)損失變化曲線,選取epoch的較優(yōu)值為40。確定模型的訓(xùn)練迭代數(shù)為40后,進行了10折交叉驗證實驗。軟件產(chǎn)品檢測報告辦理網(wǎng)絡(luò)安全新時代:深圳艾策的防御策略解析。
降低成本對每個階段都進行測試,包括文檔,便于控制項目過程缺點依賴文檔,沒有文檔的項目無法使用,復(fù)雜度很高,實踐需要很強的管理H模型把測試活動完全**出來,將測試準(zhǔn)備和測試執(zhí)行體現(xiàn)出來測試準(zhǔn)備-測試執(zhí)行就緒點其他流程----------設(shè)計等v模型適用于中小企業(yè)需求在開始必須明確,不適用變更需求w模型適用于中大企業(yè)包括文檔也需要測試(需求分析文檔概要設(shè)計文檔詳細設(shè)計文檔代碼文檔)測試和開發(fā)同步進行H模型對公司參與人員技能和溝通要求高測試階段單元測試-集成測試-系統(tǒng)測試-驗證測試是否覆蓋代碼白盒測試-黑盒測試-灰盒測試是否運行靜態(tài)測試-動態(tài)測試測試手段人工測試-自動化測試其他測試回歸測試-冒*測試功能測試一般功能測試-界面測試-易用性測試-安裝測試-兼容性測試性能測試穩(wěn)定性測試-負(fù)載測試-壓力測試-時間性能-空間性能負(fù)載測試確定在各種工作負(fù)載下,系統(tǒng)各項指標(biāo)變化情況壓力測試:通過確定一個系統(tǒng)的剛好不能接受的性能點。獲得系統(tǒng)能夠提供的**大服務(wù)級別測試用例為特定的目的而設(shè)計的一組測試輸入,執(zhí)行條件和預(yù)期結(jié)果,以便測試是否滿足某個特定需求。通過大量的測試用例來檢測軟件的運行效果,它是指導(dǎo)測試工作進行的依據(jù)。
將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入深度神經(jīng)網(wǎng)絡(luò),訓(xùn)練多模態(tài)深度集成模型;(1)方案一:采用前端融合(early-fusion)方法,首先合并訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的特征,融合成一個單一的特征向量空間,然后將其作為深度神經(jīng)網(wǎng)絡(luò)模型的輸入,訓(xùn)練多模態(tài)深度集成模型;(2)方案二:首先利用訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖分別訓(xùn)練深度神經(jīng)網(wǎng)絡(luò)模型,合并訓(xùn)練的三個深度神經(jīng)網(wǎng)絡(luò)模型的決策輸出,并將其作為感知機的輸入,訓(xùn)練得到**終的多模態(tài)深度集成模型;(3)方案三:采用中間融合(intermediate-fusion)方法,首先使用三個深度神經(jīng)網(wǎng)絡(luò)分別學(xué)習(xí)訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的高等特征表示,并合并學(xué)習(xí)得到的訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的高等特征表示融合成一個單一的特征向量空間,然后將其作為下一個深度神經(jīng)網(wǎng)絡(luò)的輸入,訓(xùn)練得到多模態(tài)深度神經(jīng)網(wǎng)絡(luò)模型。步驟s3、將軟件樣本中的類別未知的軟件樣本作為測試樣本。代碼質(zhì)量評估顯示注釋覆蓋率不足30%需加強。
所以第三方軟件檢測機構(gòu)可以說是使用loadrunner軟件工具較多的一個業(yè)務(wù)領(lǐng)域,也能保證軟件測試報告結(jié)果的性能準(zhǔn)確。二、軟件測試漏洞掃描工具在客戶需要的軟件測試報告中,軟件安全的滲透測試和漏洞掃描一般會作為信息安全性的軟件測試報告內(nèi)容。首先來說一下漏洞掃描的工具,這部分在國際上有ibm很出名的一個掃描測試工具appscan,以及針對web等的全量化掃描器nessus。國產(chǎn)的目前的綠盟漏洞掃描設(shè)備也做得非常好,個人其實更建議用綠盟的漏洞掃描設(shè)備,規(guī)則全,掃描速度快,測試報告也更符合國情。三、軟件測試滲透測試工具滲透測試屬于第三方軟件檢測測評過程中的比較專業(yè)的一個測試項,對技術(shù)的要求也比較高,一般使用的工具為burpsuite這個專業(yè)安全工具,這個工具挺全能的,不光是安全服務(wù)常用的工具,同樣也認(rèn)可作為軟件滲透測試的工具輸出??偟膩碚f,第三方軟件檢測的那些軟件測試工具,都是為了確保軟件測試報告結(jié)果的整體有效性來進行使用,也是第三方檢測機構(gòu)作為自主實驗室的這個性質(zhì),提供了具備正規(guī)效力的軟件測試過程和可靠的第三方檢測結(jié)果,所以客戶可以有一個初步的軟件測試工具了解,也對獲取一份有效的第三方軟件測試報告的結(jié)果可以有更清楚的認(rèn)識。用戶體驗測評中界面交互評分低于同類產(chǎn)品均值15.6%。大連軟件檢測報告
隱私合規(guī)檢測確認(rèn)用戶數(shù)據(jù)加密符合GDPR標(biāo)準(zhǔn)要求。安全檢測第三方機構(gòu)
圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構(gòu)圖。圖5是前端融合模型的準(zhǔn)確率變化曲線圖。圖6是前端融合模型的對數(shù)損失變化曲線圖。圖7是前端融合模型的檢測混淆矩陣示意圖。圖8是規(guī)范化前端融合模型的檢測混淆矩陣示意圖。圖9是前端融合模型的roc曲線圖。圖10是后端融合模型的架構(gòu)圖。圖11是后端融合模型的準(zhǔn)確率變化曲線圖。圖12是后端融合模型的對數(shù)損失變化曲線圖。圖13是后端融合模型的檢測混淆矩陣示意圖。圖14是規(guī)范化后端融合模型的檢測混淆矩陣示意圖。圖15是后端融合模型的roc曲線圖。圖16是中間融合模型的架構(gòu)圖。圖17是中間融合模型的準(zhǔn)確率變化曲線圖。圖18是中間融合模型的對數(shù)損失變化曲線圖。圖19是中間融合模型的檢測混淆矩陣示意圖。圖20是規(guī)范化中間融合模型的檢測混淆矩陣示意圖。圖21是中間融合模型的roc曲線圖。具體實施方式下面將結(jié)合本發(fā)明實施例中的附圖,對本發(fā)明實施例中的技術(shù)方案進行清楚、完整地描述,顯然,所描述的實施例**是本發(fā)明一部分實施例,而不是全部的實施例?;诒景l(fā)明中的實施例,本領(lǐng)域普通技術(shù)人員在沒有做出創(chuàng)造性勞動前提下所獲得的所有其他實施例,都屬于本發(fā)明保護的范圍。安全檢測第三方機構(gòu)