個(gè)性化需求,專屬服務(wù):海綿定制如何滿足多樣化市場-海綿定制
如何選擇合適的過濾綿:提升過濾效率與延長使用壽命-過濾綿
揭秘物流網(wǎng)格海綿:如何在運(yùn)輸中提供良好緩沖效果-網(wǎng)格海綿
寵物海綿爬梯:為寵物量身定制的沙發(fā)與床間通行神器-海綿爬梯
寵物友好家居設(shè)計(jì):海綿爬梯讓沙發(fā)、樓梯、床觸手可及-海綿爬梯
如何挑選高效耐用的杯刷海綿:一份實(shí)用的購買指南-杯刷海綿
淘氣堡海綿材質(zhì)對(duì)比,哪種更適合你家孩子-淘氣堡海綿
海綿鞋擦:輕松去除鞋面污漬-海綿鞋擦
高效去除洗衣機(jī)內(nèi)毛發(fā):洗衣球海綿的神奇功效-洗衣球海綿
寵物海綿爬梯:安全、舒適且有趣-小型寵物海綿爬梯輔助器報(bào)價(jià)
圖書目錄第1章軟件測試描述第2章常見的軟件測試方法第3章設(shè)計(jì)測試第4章程序分析技術(shù)第5章測試分析技術(shù)第6章測試自動(dòng)化的優(yōu)越性第7章測試計(jì)劃與測試標(biāo)準(zhǔn)第8章介紹一種企業(yè)級(jí)測試工具第9章學(xué)習(xí)一種負(fù)載測試軟件第10章軟件測試的經(jīng)驗(yàn)總結(jié)附錄A常見測試術(shù)語附錄B測試技術(shù)分類附錄C常見的編碼錯(cuò)誤附錄D有關(guān)的測試網(wǎng)站參考文獻(xiàn)軟件測試技術(shù)圖書4書名:軟件測試技術(shù)第2版作者:徐芳層次:高職高專配套:電子課件出版社:機(jī)械工業(yè)出版社出版時(shí)間:2012-06-26ISBN:978-7-111-37884-6開本:16開定價(jià):目錄第1章開始軟件測試工作第2章執(zhí)行系統(tǒng)測試第3章測試用例設(shè)計(jì)第4章測試工具應(yīng)用第5章測試技術(shù)與應(yīng)用第6章成為***的測試組長第7章測試文檔實(shí)例詞條圖冊(cè)更多圖冊(cè)。第三方驗(yàn)證實(shí)際啟動(dòng)速度較廠商宣稱慢0.7秒。jsp代碼審計(jì)
將三種模態(tài)特征和三種融合方法的結(jié)果進(jìn)行了對(duì)比,如表3所示。從表3可以看出,前端融合和中間融合較基于模態(tài)特征的檢測準(zhǔn)確率更高,損失率更低。后端融合是三種融合方法中較弱的,雖然明顯優(yōu)于基于dll和api信息、pe格式結(jié)構(gòu)特征的實(shí)驗(yàn)結(jié)果,但稍弱于基于字節(jié)碼3-grams特征的結(jié)果。中間融合是三種融合方法中**好的,各項(xiàng)性能指標(biāo)都非常接近**優(yōu)值。表3實(shí)驗(yàn)結(jié)果對(duì)比本實(shí)施例提出了基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測方法,提取了三種模態(tài)的特征(dll和api信息、pe格式結(jié)構(gòu)信息和字節(jié)碼3-grams),提出了通過三種融合方式(前端融合、后端融合、中間融合)集成三種模態(tài)的特征,有效提高惡意軟件檢測的準(zhǔn)確率和魯棒性。實(shí)驗(yàn)結(jié)果顯示,相對(duì)**且互補(bǔ)的特征視圖和不同深度學(xué)習(xí)融合機(jī)制的使用明顯提高了檢測方法的檢測能力和泛化性能,其中較優(yōu)的中間融合方法取得了%的準(zhǔn)確率,對(duì)數(shù)損失為,auc值為,各項(xiàng)性能指標(biāo)已接近**優(yōu)值??紤]到樣本集可能存在噪聲,本實(shí)施例提出的方法已取得了比較理想的結(jié)果。由于惡意軟件很難同時(shí)偽造多個(gè)模態(tài)的特征,本實(shí)施例提出的方法比單模態(tài)特征方法更魯棒。以上所述*為本發(fā)明的較佳實(shí)施例而已,并非用于限定本發(fā)明的保護(hù)范圍。軟件cnas報(bào)告用戶體驗(yàn)測評(píng)中界面交互評(píng)分低于同類產(chǎn)品均值15.6%。
先將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖分別輸入至一個(gè)深度神經(jīng)網(wǎng)絡(luò)中抽取高等特征表示,然后合并抽取的高等特征表示并將其作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入進(jìn)行模型訓(xùn)練,得到多模態(tài)深度集成模型。進(jìn)一步的,所述多模態(tài)深度集成模型的隱藏層的***函數(shù)采用relu,輸出層的***函數(shù)采用sigmoid,中間使用dropout層進(jìn)行正則化,優(yōu)化器采用adagrad。進(jìn)一步的,所述訓(xùn)練得到的多模態(tài)深度集成模型中,用于抽取dll和api信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含3個(gè)隱含層,且3個(gè)隱含層中間間隔設(shè)置有dropout層;用于抽取格式信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,且2個(gè)隱含層中間設(shè)置有dropout層;用于抽取字節(jié)碼n-grams特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含4個(gè)隱含層,且4個(gè)隱含層中間間隔設(shè)置有dropout層;用于輸入合并抽取的高等特征表示的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,且2個(gè)隱含層中間設(shè)置有dropout層;所述dropout層的dropout率均等于。本發(fā)明實(shí)施例的有益效果是,提出了一種基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測方法,應(yīng)用了多模態(tài)深度學(xué)習(xí)方法來融合dll和api、格式結(jié)構(gòu)信息、字節(jié)碼n-grams特征。
坐標(biāo)點(diǎn)(0,1)**一個(gè)完美的分類器,它將所有的樣本都正確分類。roc曲線越接近左上角,該分類器的性能越好。從圖9可以看出,該方案的roc曲線非常接近左上角,性能較優(yōu)。另外,前端融合模型的auc值為。(5)后端融合后端融合的架構(gòu)如圖10所示,后端融合方式用三種模態(tài)的特征分別訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型,然后進(jìn)行決策融合,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。本次實(shí)驗(yàn)使用了80%的樣本訓(xùn)練,20%的樣本驗(yàn)證,訓(xùn)練50個(gè)迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,后端融合模型的準(zhǔn)確率變化曲線如圖11所示,模型的對(duì)數(shù)損失變化曲線如圖12所示。從圖11和圖12可以看出,當(dāng)epoch值從0增加到5過程中,模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率快速提高,模型的訓(xùn)練對(duì)數(shù)損失和驗(yàn)證對(duì)數(shù)損失快速減少;當(dāng)epoch值從5到50的過程中,前端融合模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率小幅提高,訓(xùn)練對(duì)數(shù)損失和驗(yàn)證對(duì)數(shù)損失緩慢下降;綜合分析圖11和圖12的準(zhǔn)確率和對(duì)數(shù)損失變化曲線,選取epoch的較優(yōu)值為40。確定模型的訓(xùn)練迭代數(shù)為40后,進(jìn)行了10折交叉驗(yàn)證實(shí)驗(yàn)。性能基準(zhǔn)測試GPU利用率未達(dá)理論最大值67%。
生成取值表。3把取值表與選擇的正交表進(jìn)行映射控件數(shù)Ln(取值數(shù))3個(gè)控件5個(gè)取值5的3次冪混合正交表當(dāng)控件的取值數(shù)目水平不一致時(shí)候,使用allp**rs工具生成1等價(jià)類劃分法劃分值2邊界值分析法邊界值3錯(cuò)誤推斷法經(jīng)驗(yàn)4因果圖分析法關(guān)系5判定表法條件和結(jié)果6流程圖法流程路徑梳理7場景法主要功能和業(yè)務(wù)的事件8正交表先關(guān)注主要功能和業(yè)務(wù)流程,業(yè)務(wù)邏輯是否正確實(shí)現(xiàn),考慮場景法需要輸入數(shù)據(jù)的地方,考慮等價(jià)類劃分法+邊界值分析法,發(fā)現(xiàn)程序錯(cuò)誤的能力**強(qiáng)存在輸入條件的組合情況,考慮因果圖判定表法多種參數(shù)配置組合情況,正交表排列法采用錯(cuò)誤推斷法再追加測試用例。需求分析場景法分析主要功能輸入的等價(jià)類邊界值輸入的各種組合因果圖判定表多種參數(shù)配置正交表錯(cuò)誤推斷法經(jīng)驗(yàn)軟件缺陷軟件產(chǎn)品中存在的問題,用戶所需要的功能沒有完全實(shí)現(xiàn)。自動(dòng)化測試發(fā)現(xiàn)7個(gè)邊界條件未處理的異常情況。產(chǎn)品軟件功能檢測報(bào)告
艾策科技:如何用數(shù)據(jù)分析重塑企業(yè)決策!jsp代碼審計(jì)
您當(dāng)前的位置:首頁>商務(wù)服務(wù)>軟著退稅軟件測試報(bào)告軟件測評(píng)軟著退稅軟件測試報(bào)告軟件測評(píng)65531產(chǎn)品價(jià)格:面議發(fā)貨地址:北京豐臺(tái)包裝說明:不限產(chǎn)品數(shù)量:個(gè)產(chǎn)品規(guī)格:不限信息編號(hào):公司編號(hào):17099560徐經(jīng)理總經(jīng)理微信進(jìn)入店鋪在線咨詢QQ咨詢相關(guān)產(chǎn)品:航標(biāo)**集團(tuán)有限公司軟件檢測報(bào)告|軟件測試報(bào)告依據(jù)科研項(xiàng)目驗(yàn)收考核指標(biāo),對(duì)項(xiàng)目產(chǎn)品應(yīng)達(dá)到的主要技術(shù)指標(biāo)進(jìn)行評(píng)測,出具測試報(bào)告。軟件檢測報(bào)告|軟件測試報(bào)告業(yè)主方驗(yàn)收評(píng)測適用于系統(tǒng)開發(fā)完成后,正式上線前的階段。用戶收益:?為系統(tǒng)建設(shè)單位(**、央企等)規(guī)避風(fēng)險(xiǎn),提高政績;?幫助為基金/課題項(xiàng)目承接方(科研院校、軟件企業(yè)等)提供驗(yàn)收依據(jù);?系統(tǒng)建設(shè)單位更直觀準(zhǔn)確地了解系統(tǒng)實(shí)際表現(xiàn);?為驗(yàn)收評(píng)審**提供參考數(shù)據(jù);?幫助系統(tǒng)建設(shè)方(軟件企業(yè))提升系統(tǒng)的含金量;適用對(duì)象:?系統(tǒng)建設(shè)方;?系統(tǒng)開發(fā)的承建方。服務(wù)流程(1)材料準(zhǔn)備《軟件產(chǎn)品登記測試委托申請(qǐng)表---模板》《用戶手冊(cè)---終稿》被測軟件產(chǎn)品著作權(quán)掃描件---確認(rèn)軟件名稱版本號(hào)。jsp代碼審計(jì)