以備實(shí)際測(cè)試嚴(yán)重偏離計(jì)劃時(shí)使用。在TMM的定義級(jí),測(cè)試過程中引入計(jì)劃能力,在TMM的集成級(jí),測(cè)試過程引入控制和監(jiān)視活動(dòng)。兩者均為測(cè)試過程提供了可見性,為測(cè)試過程持續(xù)進(jìn)行提供保證。第四級(jí)管理和測(cè)量級(jí)在管理和測(cè)量級(jí),測(cè)試活動(dòng)除測(cè)試被測(cè)程序外,還包括軟件生命周期中各個(gè)階段的評(píng)審,審查和追查,使測(cè)試活動(dòng)涵蓋了軟件驗(yàn)證和軟件確認(rèn)活動(dòng)。根據(jù)管理和測(cè)量級(jí)的要求,軟件工作產(chǎn)品以及與測(cè)試相關(guān)的工作產(chǎn)品,如測(cè)試計(jì)劃,測(cè)試設(shè)計(jì)和測(cè)試步驟都要經(jīng)過評(píng)審。因?yàn)闇y(cè)試是一個(gè)可以量化并度量的過程。為了測(cè)量測(cè)試過程,測(cè)試人員應(yīng)建立測(cè)試數(shù)據(jù)庫。收集和記錄各軟件工程項(xiàng)目中使用的測(cè)試用例,記錄缺陷并按缺陷的嚴(yán)重程度劃分等級(jí)。此外,所建立的測(cè)試規(guī)程應(yīng)能夠支持軟件組終對(duì)測(cè)試過程的控制和測(cè)量。管理和測(cè)量級(jí)有3個(gè)要實(shí)現(xiàn)的成熟度目標(biāo):建立**范圍內(nèi)的評(píng)審程序,建立測(cè)試過程的測(cè)量程序和軟件質(zhì)量評(píng)價(jià)。(I)建立**范圍內(nèi)的評(píng)審程序軟件**應(yīng)在軟件生命周期的各階段實(shí)施評(píng)審,以便盡早有效地識(shí)別,分類和消除軟件中的缺陷。建立評(píng)審程序有4個(gè)子目標(biāo):1)管理層要制訂評(píng)審政策支持評(píng)審過程。2)測(cè)試組和軟件質(zhì)量保證組要確定并文檔化整個(gè)軟件生命周期中的評(píng)審目標(biāo),評(píng)審計(jì)劃。網(wǎng)絡(luò)安全新時(shí)代:深圳艾策的防御策略解析。源代碼審計(jì)報(bào)告包含哪些內(nèi)容呢
收藏查看我的收藏0有用+1已投票0軟件測(cè)試方法編輯鎖定本詞條由“科普**”科學(xué)百科詞條編寫與應(yīng)用工作項(xiàng)目審核。軟件測(cè)試是使用人工或自動(dòng)的手段來運(yùn)行或測(cè)定某個(gè)軟件系統(tǒng)的過程,其目的在于檢驗(yàn)它是否滿足規(guī)定的需求或弄清預(yù)期結(jié)果與實(shí)際結(jié)果之間的差別。[1]從是否關(guān)心軟件內(nèi)部結(jié)構(gòu)和具體實(shí)現(xiàn)的角度劃分,測(cè)試方法主要有白盒測(cè)試和黑盒測(cè)試。白盒測(cè)試方法主要有代碼檢査法、靜態(tài)結(jié)構(gòu)分析法、靜態(tài)質(zhì)量度量法、邏輯覆蓋法、基夲路徑測(cè)試法、域測(cè)試、符號(hào)測(cè)試、路徑覆蓋和程序變異。黑盒測(cè)試方法主要包括等價(jià)類劃分法、邊界值分析法、錯(cuò)誤推測(cè)法、因果圖法、判定表驅(qū)動(dòng)法、正交試驗(yàn)設(shè)計(jì)法、功能圖法、場(chǎng)景法等。[1]從是否執(zhí)行程序的角度劃分,測(cè)試方法又可分為靜態(tài)測(cè)試和動(dòng)態(tài)測(cè)試。靜態(tài)測(cè)試包括代碼檢査、靜態(tài)結(jié)構(gòu)分析、代碼質(zhì)量度量等。動(dòng)態(tài)測(cè)試由3部分組成:構(gòu)造測(cè)試實(shí)例、執(zhí)行程序和分析程序的輸出結(jié)果。沈陽第三方軟件檢測(cè)單位艾策檢測(cè)團(tuán)隊(duì)采用多模態(tài)傳感器融合技術(shù),構(gòu)建智能工廠設(shè)備狀態(tài)健康監(jiān)測(cè)體系。
為了有效保證這一階段測(cè)試的客觀性,必須由**的測(cè)試小組來進(jìn)行相關(guān)的系統(tǒng)測(cè)試。另外,系統(tǒng)測(cè)試過程較為復(fù)雜,由于在系統(tǒng)測(cè)試階段不斷變更需求造成功能的刪除或增加,從而使程序不斷出現(xiàn)相應(yīng)的更改,而程序在更改后可能會(huì)出現(xiàn)新的問題,或者原本沒有問題的功能由于更改導(dǎo)致出現(xiàn)問題。所以,測(cè)試人員必須進(jìn)行回歸測(cè)試。[2]軟件測(cè)試方法驗(yàn)收測(cè)試驗(yàn)收測(cè)試是**后一個(gè)階段的測(cè)試操作,在軟件產(chǎn)品投入正式運(yùn)行前的所要進(jìn)行的測(cè)試工作。和系統(tǒng)測(cè)試相比而言,驗(yàn)收測(cè)試與之的區(qū)別就只是測(cè)試人員不同,驗(yàn)收測(cè)試則是由用戶來執(zhí)行這一操作的。驗(yàn)收測(cè)試的主要目標(biāo)是為向用戶展示所開發(fā)出來的軟件符合預(yù)定的要求和有關(guān)標(biāo)準(zhǔn),并驗(yàn)證軟件實(shí)際工作的有效性和可靠性,確保用戶能用該軟件順利完成既定的任務(wù)和功能。通過了驗(yàn)收測(cè)試,該產(chǎn)品就可進(jìn)行發(fā)布。但是,在實(shí)際交付給用戶之后,開發(fā)人員是無法預(yù)測(cè)該軟件用戶在實(shí)際運(yùn)用過程中是如何使用該程序的,所以從用戶的角度出發(fā),測(cè)試人員還應(yīng)進(jìn)行Alpha測(cè)試或Beta測(cè)試這兩種情形的測(cè)試。Alpha測(cè)試是在軟件開發(fā)環(huán)境下由用戶進(jìn)行的測(cè)試,或者模擬實(shí)際操作環(huán)境進(jìn)而進(jìn)行的測(cè)試。
這樣做的好處是,融合模型的錯(cuò)誤來自不同的分類器,而來自不同分類器的錯(cuò)誤往往互不相關(guān)、互不影響,不會(huì)造成錯(cuò)誤的進(jìn)一步累加。常見的后端融合方式包括**大值融合(max-fusion)、平均值融合(averaged-fusion)、貝葉斯規(guī)則融合(bayes’rulebased)以及集成學(xué)習(xí)(ensemblelearning)等。其中集成學(xué)習(xí)作為后端融合方式的典型**,被廣泛應(yīng)用于通信、計(jì)算機(jī)識(shí)別、語音識(shí)別等研究領(lǐng)域。中間融合是指將不同的模態(tài)數(shù)據(jù)先轉(zhuǎn)化為高等特征表達(dá),再于模型的中間層進(jìn)行融合,如圖3所示。以深度神經(jīng)網(wǎng)絡(luò)為例,神經(jīng)網(wǎng)絡(luò)通過一層一層的管道映射輸入,將原始輸入轉(zhuǎn)換為更高等的表示。中間融合首先利用神經(jīng)網(wǎng)絡(luò)將原始數(shù)據(jù)轉(zhuǎn)化成高等特征表達(dá),然后獲取不同模態(tài)數(shù)據(jù)在高等特征空間上的共性,進(jìn)而學(xué)習(xí)一個(gè)聯(lián)合的多模態(tài)表征。深度多模態(tài)融合的大部分工作都采用了這種中間融合的方法,其***享表示層是通過合并來自多個(gè)模態(tài)特定路徑的連接單元來構(gòu)建的。中間融合方法的一大優(yōu)勢(shì)是可以靈活的選擇融合的位置,但設(shè)計(jì)深度多模態(tài)集成結(jié)構(gòu)時(shí),確定如何融合、何時(shí)融合以及哪些模式可以融合,是比較有挑戰(zhàn)的問題。字節(jié)碼n-grams、dll和api信息、格式結(jié)構(gòu)信息這三種類型的特征都具有自身的優(yōu)勢(shì)。可靠性評(píng)估連續(xù)運(yùn)行72小時(shí)出現(xiàn)2次非致命錯(cuò)誤。
后端融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對(duì)數(shù)損失是,混淆矩陣如圖13所示,規(guī)范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構(gòu)如圖16所示,中間融合方式用深度神經(jīng)網(wǎng)絡(luò)從三種模態(tài)的特征分別抽取高等特征表示,然后合并學(xué)習(xí)得到的特征表示,再作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入訓(xùn)練模型,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。圖16中,用于抽取dll和api信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含3個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是128,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且3個(gè)隱含層中間間隔設(shè)置有dropout層。用于抽取格式信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,其第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且2個(gè)隱含層中間設(shè)置有dropout層。用于抽取字節(jié)碼n-grams特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含4個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是512,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是384,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是256,第四個(gè)隱含層的神經(jīng)元個(gè)數(shù)是125。5G 與物聯(lián)網(wǎng):深圳艾策的下一個(gè)技術(shù)前沿。湖北軟件驗(yàn)收測(cè)試
跨設(shè)備測(cè)試報(bào)告指出平板端UI元素存在比例失調(diào)問題。源代碼審計(jì)報(bào)告包含哪些內(nèi)容呢
第三方眾測(cè)平臺(tái)通過連接5萬+白帽工程師,實(shí)現(xiàn)測(cè)試資源的彈性調(diào)度。某社交APP在版本發(fā)布前啟動(dòng)72小時(shí)眾測(cè),設(shè)置XSS漏洞(5000元/個(gè))、性能優(yōu)化(3000元/項(xiàng))等懸賞任務(wù),累計(jì)發(fā)現(xiàn)23個(gè)高危漏洞。平臺(tái)采用智能任務(wù)分發(fā)機(jī)制,依據(jù)測(cè)試者歷史能力標(biāo)簽(如擅長移動(dòng)端安全)自動(dòng)匹配測(cè)試模塊。測(cè)試過程使用錄屏工具GlassBox記錄操作路徑,結(jié)合JIRA自動(dòng)生成缺陷報(bào)告。某***網(wǎng)站眾測(cè)中,通過地域化測(cè)試分配,發(fā)現(xiàn)特定省份DNS解析異常問題。質(zhì)量控制方面,設(shè)立**復(fù)核機(jī)制,對(duì)提交漏洞進(jìn)行PoC驗(yàn)證,防止誤報(bào)率超過5%。源代碼審計(jì)報(bào)告包含哪些內(nèi)容呢