超薄PDMS與光學(xué)玻璃的鍵合工藝優(yōu)化:超薄PDMS(100μm以上)與光學(xué)玻璃的鍵合技術(shù)實(shí)現(xiàn)了柔性微流控芯片與高透光基板的集成,適用于熒光顯微成像、單細(xì)胞觀測(cè)等場(chǎng)景。鍵合前,PDMS基板經(jīng)氧等離子體處理(功率50W,時(shí)間20秒)實(shí)現(xiàn)表面羥基化,光學(xué)玻璃通過(guò)UV-Ozone清洗去除有機(jī)物污染;然后在潔凈環(huán)境下對(duì)準(zhǔn)貼合,施加0.2MPa壓力并室溫固化2小時(shí),形成不可逆共價(jià)鍵,透光率>95%@400-800nm,鍵合界面缺陷率<1%。超薄PDMS的柔韌性(彈性模量1-3MPa)可減少玻璃基板的應(yīng)力集中,耐彎曲半徑>10mm,適用于動(dòng)態(tài)培養(yǎng)環(huán)境下的細(xì)胞觀測(cè)。在單分子檢測(cè)芯片中,鍵合后的玻璃表面可直接進(jìn)行熒光標(biāo)記物修飾,背景噪聲較傳統(tǒng)塑料基板降低60%,檢測(cè)靈敏度提升至單分子級(jí)別。公司開(kāi)發(fā)的自動(dòng)對(duì)準(zhǔn)系統(tǒng),定位精度±2μm,支持4英寸晶圓級(jí)批量鍵合,產(chǎn)能達(dá)500片/小時(shí),良率>98%。該工藝解決了軟質(zhì)材料與硬質(zhì)光學(xué)元件的集成難題,為高精度生物檢測(cè)與醫(yī)學(xué)影像芯片提供了理想的封裝方案??山到饩酆衔锛庸すに噧?chǔ)備,為體內(nèi)短期植入檢測(cè)芯片提供生物相容性材料解決方案。重慶MEMSMEMS微納米加工
MEMS制作工藝-太赫茲傳感器:
超材料(Metamaterial)是一種由周期性亞波長(zhǎng)金屬諧振的單元陣列組成的人工復(fù)合型電磁材料,通過(guò)合理的設(shè)計(jì)單元結(jié)構(gòu)可實(shí)現(xiàn)特殊的電磁特性,主要包括隱身、完美吸和負(fù)折射等特性。目前,隨著太赫茲技術(shù)的快速發(fā)展,太赫茲超材料器件已成為當(dāng)前科研的研究熱點(diǎn),在濾波器、吸收器、偏振器、太赫茲成像、光譜和生物傳感器等領(lǐng)域有著廣闊的應(yīng)用前景。
這項(xiàng)研究提出了一種全光學(xué)、端到端的衍射傳感器,用于快速探測(cè)隱藏結(jié)構(gòu)。這種衍射太赫茲傳感器具有獨(dú)特的架構(gòu),由一對(duì)編碼器和解碼器構(gòu)成的衍射網(wǎng)絡(luò)組成,每個(gè)網(wǎng)絡(luò)都承擔(dān)著結(jié)構(gòu)化照明和空間光譜編碼的獨(dú)特職責(zé),這種設(shè)計(jì)較為新穎?;谶@種獨(dú)特的架構(gòu),研究人員展示了概念驗(yàn)證的隱藏缺陷探測(cè)傳感器。實(shí)驗(yàn)結(jié)果和分析成功證實(shí)了該單像素衍射太赫茲傳感器的可行性,該傳感器使用脈沖照明來(lái)識(shí)別測(cè)試樣品內(nèi)各種未知形狀和位置的隱藏缺陷,具有誤報(bào)率極低、無(wú)需圖像形成和采集以及數(shù)字處理步驟等特點(diǎn)。 寧夏MEMS微納米加工廠家電話(huà)MEMS四種ICP-RIE刻蝕工藝的不同需求。
MEMS技術(shù)的主要分類(lèi):光學(xué)方面相關(guān)的資料與技術(shù)。光學(xué)隨著信息技術(shù)、光通信技術(shù)的迅猛發(fā)展,MEMS發(fā)展的又一領(lǐng)域是與光學(xué)相結(jié)合,即綜合微電子、微機(jī)械、光電子技術(shù)等基礎(chǔ)技術(shù),開(kāi)發(fā)新型光器件,稱(chēng)為微光機(jī)電系統(tǒng)(MOEMS)。微光機(jī)電系統(tǒng)(MOEMS)能把各種MEMS結(jié)構(gòu)件與微光學(xué)器件、光波導(dǎo)器件、半導(dǎo)體激光器件、光電檢測(cè)器件等完整地集成在一起。形成一種全新的功能系統(tǒng)。MOEMS具有體積小、成本低、可批量生產(chǎn)、可精確驅(qū)動(dòng)和控制等特點(diǎn)。
MEMS具有以下幾個(gè)基本特點(diǎn),微型化、智能化、多功能、高集成度和適于大批量生產(chǎn)。MEMS技術(shù)的目標(biāo)是通過(guò)系統(tǒng)的微型化、集成化來(lái)探索具有新原理、新功能的元件和系統(tǒng)。 MEMS技術(shù)是一種典型的多學(xué)科交叉的前沿性研究領(lǐng)域,幾乎涉及到自然及工程科學(xué)的所有領(lǐng)域,如電子技術(shù)、機(jī)械技術(shù)、物理學(xué)、化學(xué)、生物醫(yī)學(xué)、材料科學(xué)、能源科學(xué)等。MEMS是一個(gè)單獨(dú)的智能系統(tǒng),可大批量生產(chǎn),其系統(tǒng)尺寸在幾毫米乃至更小,其內(nèi)部結(jié)構(gòu)一般在微米甚至納米量級(jí)。例如,常見(jiàn)的MEMS產(chǎn)品尺寸一般都在3mm×3mm×1.5mm,甚至更小。微機(jī)電系統(tǒng)在國(guó)民經(jīng)濟(jì)和更高級(jí)別的系統(tǒng)方面將有著廣泛的應(yīng)用前景。主要民用領(lǐng)域是電子、醫(yī)學(xué)、工業(yè)、汽車(chē)和航空航天系統(tǒng)。MEMS的繼電器與開(kāi)關(guān)是什么?
基于MEMS技術(shù)的SAW器件的工作模式和原理:
聲表面波器件一般使用壓電晶體(例如石英晶體等)作為媒介,然后通過(guò)外加一正電壓產(chǎn)生聲波,并通過(guò)襯底進(jìn)行傳播,然后轉(zhuǎn)換成電信號(hào)輸出。聲表面波傳感器中起主導(dǎo)作用的主要是壓電效應(yīng),其設(shè)計(jì)時(shí)需要考慮多種因素:如相對(duì)尺寸、敏感性、效率等。一般地,無(wú)線(xiàn)無(wú)源聲表面波傳感器的信號(hào)頻率范圍從40MHz到幾個(gè)GHz。圖2所示為聲表面波傳感器常見(jiàn)的結(jié)構(gòu),主要部分包括壓電襯底天線(xiàn)、敏感薄膜、IDT等。傳感器的敏感層通過(guò)改變聲表面波的速度來(lái)實(shí)現(xiàn)頻率的變化。
無(wú)線(xiàn)無(wú)源聲表面波系統(tǒng)包:發(fā)射器、接收器、聲表面波器件、通信頻道。發(fā)射器和接收器組合成收發(fā)器或者解讀器的單一模塊。圖3為聲表面波系統(tǒng)及其相互關(guān)聯(lián)的基礎(chǔ)部件。解讀器將功率傳送給聲表面波器件,該功率可以是收發(fā)器輸入的連續(xù)波,脈沖或者喝啾。一般地,聲表面波器件獲得的功率大小具有一定限制,以降低發(fā)射功率,從而得到相同平均功率的喝啾。根據(jù)各向同性的輻射體,接收的信號(hào)一般能通過(guò)高效的輻射功率天線(xiàn)發(fā)射。 MEMS傳感器的主要應(yīng)用領(lǐng)域有哪些?湖北MEMS微納米加工組成
有哪些較為前沿的MEMS傳感器的供應(yīng)廠家?重慶MEMSMEMS微納米加工
超薄石英玻璃雙面套刻加工技術(shù)解析:在厚度100μm以上的超薄石英玻璃基板上進(jìn)行雙面套刻加工,是實(shí)現(xiàn)高集成度微流控芯片與光學(xué)器件的關(guān)鍵技術(shù)。公司采用激光微加工與紫外光刻結(jié)合工藝,首先通過(guò)CO?激光切割實(shí)現(xiàn)玻璃基板的高精度成型(邊緣誤差<±5μm),然后利用雙面光刻對(duì)準(zhǔn)系統(tǒng)(精度±1μm)進(jìn)行微結(jié)構(gòu)加工。正面通過(guò)干法刻蝕制備5-50μm深度的微流道,背面采用離子束濺射沉積100nm厚度的金屬電極層,經(jīng)光刻剝離形成微米級(jí)電極陣列。針對(duì)玻璃材質(zhì)的脆性特點(diǎn),開(kāi)發(fā)了低溫鍵合技術(shù)(150-200℃),使用硅基粘合劑實(shí)現(xiàn)雙面結(jié)構(gòu)的密封,鍵合強(qiáng)度>3MPa,耐水壓>50kPa。該技術(shù)應(yīng)用于光聲成像芯片時(shí),正面微流道實(shí)現(xiàn)樣本輸送,背面電極陣列同步激發(fā)光聲信號(hào),光-電信號(hào)延遲<10ns,成像分辨率達(dá)50μm。此外,超薄玻璃的高透光性(>95%@400-1000nm)與化學(xué)穩(wěn)定性,使其成為熒光檢測(cè)、拉曼光譜分析等**芯片的優(yōu)先基板,公司已實(shí)現(xiàn)4英寸晶圓級(jí)批量加工,成品率>90%,為光學(xué)微系統(tǒng)集成提供了可靠的制造平臺(tái)。重慶MEMSMEMS微納米加工